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ABSTRACT 

Extreme weather affects not only transport infrastructure, but also travel behaviour. 

Climate change is causing more frequent and intense severe weather events, and 

thus is increasing the risks to transport infrastructure, services, and travellers. Travel 

behaviour trends are also in flux due to shifting working and activity patterns, as 

space-time flexibility and accessibility choice increases, and standard commuting 

journeys decline. Information and communication technologies (ICT) are one reason 

for these changing trends in travel behaviour, and, like climate change, create 

uncertainty in predicting transport operations and travel choices. However, ICT also 

has the potential to make mobility and accessibility more sustainable and more 

responsive to climate change impacts. This thesis sets out to identify the 

opportunities that improving ICT and increasing space-time flexibility create for 

commuters and other travellers to maintain accessibility, particularly to work 

activities, that they may better respond to severe weather, risk, and transport 

disruption, thereby boosting resilience. The research also concludes that through the 

integration of travel choices and Internet accessibility and by taking action to address 

spatial and temporal barriers, policy might better support both resilience and 

sustainability. 
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1. INTRODUCTION 

This thesis is a study of sustainable access behaviours, which focuses on the 

adaptation and resilience aspects of sustainability, and incorporates both the travel 

and Information and Communication Technologies (ICT) aspects of accessibility. It 

reviews the literature on the impacts of weather on both infrastructure and travel 

behaviour, and also brings together literature on transport, digital, and accessibility 

trends to explore how they might manifest in more resilient responses to future climate 

disruption. It contributes to this literature with four quantitative, empirical studies of 

some of the interactions between travel choices, internet activity and severe weather 

events. Two of these are case studies of particular, severe weather events in English 

sub-regions, and two look at trends over time at a national, spatial scale. In summary, 

this thesis aims to offer insights into how the integration of transport and online 

accessibility, improvements in space-time flexibility due to socio-economic and 

geographic trends, and proactive policy could help deliver a more sustainable and 

resilient future. 

1.1 Identifying the gaps between areas of research 

The transport sector is a major source of greenhouse gas emissions, accounting for 

almost a quarter of total global emissions, and is the largest sectoral emitter in the 

United Kingdom (UK) (Bell et al., 2016; Sims et al., 2014). Thus, it is not surprising that 

studies of and policies for sustainable travel behaviours have usually focused on ways 

that the carbon emissions and other environmental impacts of transport, such as air 

and noise pollution, might be mitigated (Banister, 2008; Cairns et al., 2010). Yet the 

transport sector is also subject to the environmental risks arising from climate change, 

such as more extreme weather events. In the UK, more frequent coastal and river 
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flooding, storm surges and more intense storms, the latter of which result in increased 

wind speeds and gusts, lightening, and pluvial flooding, have been identified as 

presenting the greatest risks to transport, energy, and other infrastructure (Brown et 

al., 2014; Kovats et al., 2014; McColl et al., 2012).  

There are other risks to transport infrastructure, including terrorism, deterioration 

and insufficient investment in maintenance (Rogers et al., 2012), as well as planned 

disruption due to events, roadworks, or strikes. However, the unplanned nature of 

severe weather events and the likelihood that their increase in frequency and intensity 

due to climate change will cause transport disruption more often over a wider area and 

affect a wider population, increases the importance of understanding the impacts of 

severe weather not only on transport infrastructure, but also on travel behaviour. 

Individuals using the transport network in severe weather are at greater risk of delay, 

disruption to their journeys, and a reduction in their personal safety. Therefore, 

adaptation to climate change impacts like severe weather is as relevant to sustainable 

mobility and accessibility as is the mitigation of transport impacts like carbon emissions 

on climate. Furthermore, just as mitigation looks at transport demand and travel 

behaviour, so the public response to the transport disruptions caused by severe 

weather cannot be ignored (Mattson and Jenelius, 2015).  

In order to understand the potential to reduce risk through travel behaviour 

adaptation to severe weather or other disruption, this thesis focuses not on mobility 

and its concern with the distance and speed of travel, but on accessibil ity and the 

opportunities available to participate in activities, obtain goods, and benefit from 

services. Of particular interest is access to work activities, as commuting is often 

described in the transport literature as an ‘anchor’, a ‘mandatory’ or ‘non-discretionary’ 
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journey within a concentrated timescale around which other daily travel is organised 

(Le Vine et al., 2017; Miller, 2005). Yet the number of direct commuting trips in the UK 

are in decline, as is their share of total trips taken, due to transport trends such as 

substituting online access for travel through increased telecommuting; less trip-making 

among groups spending more time at home; and more efficient trip-making, e.g. 

increased trip chaining (Chatterjee et al., 2018; Goodwin, 2012; Headicar and Stokes, 

2016; Le Vine et al., 2017). Economic trends also bear substantial responsibility, as 

advanced economies like the UK have trended towards more part-time work, self-

employment, sub-contracting, and jobs where there is no fixed workplace, all of which 

result in observed increases in the variability of intra-personal, daily travel, which does 

not fit the narrow definition of commuting (Crawford et al., 2018; Haddad et. al, 2009; 

Le Vine et al., 2017; Messenger and Gschwind, 2016). Thus, it is important to explore 

fixedness or flexibility of access to work activities within a conceptual framework that 

can incorporate these dynamic trends and explore their potential during disruption, 

such as that from extreme weather scenarios.  

Space-time geography or dynamic accessibility is such a framework. It considers 

the spatial and temporal constraints on personal movement. These include an 

individual’s availability to undertake activities at multiple locations within a given 

timeframe; where and when interactions with other people are required; and whether 

barriers are erected by third parties, such as the opening hours of a private space, the 

timetable of a transport service, or closures / cancellations due to weather 

(Hägerstrand, 1970; Lee and Miller, 2018; Miller, 2005; Schwanen and Kwan, 2008; 

Wang et al., 2018). Within this framework, the ability of travellers to respond to risk 

resiliently is dependent upon their spatial and temporal flexibility, which is in turn an 
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expression of socio-economic and demographic characteristics, geographic situation, 

accessibility options, and information / awareness. The level of temporal flexibility is 

accentuated by severe weather events and the pressure extreme weather exerts upon 

the reliability of travel options, as well as the potential of ICT to enable more resilient 

access choices that offer better reliability in those circumstances.  

Both transport and ICT are accessibility options that can reduce spatial and temporal 

constraints through additions to the networks or improved services, but transport and 

ICT systems can also exclude some potential users due to where they live, who they 

are, and what they do. Indeed, the penetration, capacity, and quality of ICT and 

transport access varies with density, distance, rurality, and urban form; age, skills, and 

affordability can affect individuals’ capability to access options; and the expansion of 

options can also create new constraints such as increased expectations of availability 

(Blank et al., 2018; Clark et al., 2016; Hincks et al., 2018; Noulas et al., 2012; Philip et 

al., 2017; Schwanen and Kwan, 2008; Tranos et al., 2013). Just as transport 

accessibility is a function not only of distance, but also of time and cost or, in other 

words, the convenience and effort required to make a trip, so ICT accessibility requires 

inputs of time and effort to find information or make a transaction, affecting the 

attractiveness of the access available (Kwan, 2001). Therefore, it is important to 

consider ICT and transport modes as overlapping systems of access, as shown in 

Figure 1.1, recognising that numerous, similar factors influence the level of dynamic 

accessibility that transport and ICT networks, systems, and services offer in different 

places or at different times. These spatial and temporal factors, as listed in Figure 1.1, 

can take different forms or vary in importance depending upon the purpose and mode 

of access that is under analysis, but offer a starting point for defining the variables to 
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measure or model changes in access and potential accessibility opportunities or 

threats during severe weather events. 

 
Figure 1.1: Variables influencing dynamic accessibility / level of constraints on 
transport / ICT networks 

Severe weather affects an individual’s calculations of not only the time, cost, and 

effort required for different access options, but also the reliability and risk affecting that 

option. Therefore, just as a strategy for resilient infrastructure considers whether it will 

be robust enough to avoid impact, provides redundancy to reduce risk, or will recover 

quickly after an event; resilient access behaviour choices include resisting change, 

replicating the norm as closely as possible via an alternative route / mode, or 

postponement and cancellation until access returns to normal. ICT expands these 

choices by enabling online access to activities from home, so that the journey may be 

cancelled whilst access is maintained. It can also offer immediate access to information 

on transport services if available, alternative destinations that might be more 

accessible during disruption, and local weather forecasts. Such information can inform 

responses such as delaying departure times or increasing / reducing the duration of 



6 
 

an activity to avoid disruption. Recent research suggests that volumes of internet traffic 

and road traffic, particularly at peak commuting periods, are closely and inversely 

related (Stubbings and Rowe, 2019). Thus, the concept of dynamic accessibility helps 

put into perspective the altered access challenges faced by different groups and 

individuals in both time and space during severe weather and disruption to transport 

networks, and how ICT and transport together might overcome some of those 

challenges. 

 
Figure 1.2: Options for responses to Transport and Access Disruption 

Figure 1.2 visualises the choices / options for changing behaviour during disruption. 

The form and availability of these options depends upon an individual’s demographic 

and socio-economic characteristics, and the geographic characteristics of where they 

live and work. Figure 1.2 is not intended to describe decision pathways, but does give 

some indication of a hierarchy of options. The lowest branches offer the easiest 

choices, where access to the proposed activity and interaction is almost fully 
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maintained, albeit by a different route or mode. More difficult is choosing to reduce the 

time or spaces available for the activity, whilst at the top of the tree are the options that 

indicate reduced accessibility during the disruption as some activities are postponed, 

cancelled, or considered less essential than a priority activity that takes more time to 

access. Some of these options are more thoroughly explored in the literature than 

others, and some are explored only at a limited level of spatial and demographic detail. 

1.2 Research Aim and Objectives 

In summary, extreme weather affects not only transport infrastructure, but also travel 

behaviour. Travel behaviour trends are in flux due to shifting working and activity 

patterns, as space-time flexibility and accessibility choice increases, and standard 

commuting journeys decline. These trends influence how access choices are made 

during severe weather or other disruptions. Improving ICT also have the potential to 

make mobility and accessibility more sustainable and more responsive to weather 

impacts in particular, as ICT infrastructure is more robust than transport infrastructure 

during such events and ICT disruption more often has other causes (see section 2.2). 

However, like transport infrastructure and services, internet availability, quality, and 

usage varies geographically and socio-demographically. Therefore, the overarching 

aim of this thesis is to provide new evidence and answers to the following question:  

What opportunities do improving ICT and increasing space-time flexibility create 

for commuters and other travellers, that they may better respond to severe 

weather, risk, and transport disruption, thereby boosting resilience and, with 

appropriate policy actions, enabling more sustainable choices? 
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In order that the investigations in this thesis do more than replicate previous studies, 

the empirical research was designed to meet at least two of the following three 

objectives:  

a) To focus on travel or access behaviour and how it changes during severe 

weather events, rather than the impact of extreme weather on infrastructure or 

changing travel behaviour during daily weather variation.  

b) To use data sources and / or quantitative methodologies which can interrogate 

the influence of geographic and socio-demographic, or more particularly socio-

economic, characteristics on space-time flexibility and accessibility trends in 

order to understand how these influences interact with the response to severe 

weather.  

c) To seek out insights into those response options which have been subject to 

less research in the past, and consider their potential implications for future 

policy. 

1.3 Thesis Structure 

The literature review is split into two chapters: Chapter 2 on the documented 

interactions between weather and transport, and Chapter 3 on the how the interactions 

between ICT and transport expand the potential for greater resilience if both types of 

access are considered jointly. The literature presented in the first section of Chapter 2 

studies the likelihood and prevalence of changes in access behaviour, including many 

of the choices depicted in Figure 1.2 in response to daily weather conditions or severe 

weather events. Case studies from around the world suggest some clear trends in the 

travel behavioural response to weather conditions, although there are some gaps in 

the evidence for certain options. Many of these studies also support the hypothesis 
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that any response by those normally engaged in commute trips is more muted than 

those travelling for other purposes. The rest of Chapter 2 focuses on the supply side, 

and the comparative risks to transport and ICT infrastructure and services, particularly 

in the UK, as that is the geographical focus of the empirical studies in this thesis. 

Chapter 3 is divided into three sections. The first considers how ICT supports transport 

reliability even during disruption. The second explores how it can provide an alternative 

means of access, particularly through telecommuting. And the third reviews various 

perspectives on accessibility trends in the digital age to offer insight into how these 

interactions could influence both planning for and recovery from disruptive events like 

extreme weather. 

Chapter 4 begins with a section on secondary data sources and their potential for 

providing evidence of the relationship between extreme weather, ICT, and travel, 

despite being collected for other purposes. The empirical analysis was conducted at 

both the national and sub-regional levels, using a variety of traditional and ‘big’ data 

sources, including the English National Travel Survey, electronic ticketing transactions, 

crowd-sourced broadband speed checks, origin-destination matrices derived from 

mobile phone network data, and a variety of open, complementary data to control for 

socio-economic and geographic characteristics. Next, Chapter 4 summarises the 

importance of a case study approach combined with a wide range of quantitative 

methodologies in order to extract meaningful messages from secondary data sources 

not designed for the research question which is the subject of this thesis. The 

quantitative methodologies ranged from producing summary graphs and maps to multi-

level and multinomial logistic regression models in order to understand both how 
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access behaviours change during severe weather conditions, and the potential for 

more resilient access behaviours in future cases or via building on existing trends.  

Chapters 5 through 8 form the empirical portion of this thesis, and provide additional 

detail on the context, data sources, derived variables, and methodology utilised in four 

related, but separate studies, as well as the results of each analysis. Chapter 5 is a 

relatively simple case study of changes in bus travel in the small, urban area of 

Reading, UK during a single, impactful winter storm. A clear switch between public 

transport modes, namely train to bus / park and ride along a particular interurban 

corridor with key employment destinations, is highlighted and discussed. Chapter 6 

also takes a case study approach, but analyses a much larger spectrum of movements 

throughout the entire metropolitan area around Birmingham, UK. Mobile phone 

network data is used in this case study to interrogate the accessibility of every 

neighbourhood in the study area as both residential origin and workplace destination 

for work and non-work trip purposes. The chapter interrogates the geographic and 

socio-economic influences on the revealed increase in direct commuting trips and 

decline in journeys for other purposes under storm conditions. Chapter 7 expands the 

study area further to the entirety of England and Wales and models how internet activity 

varies across time and space as measured through the proxy of broadband speed. 

The slower speeds revealed in regions where and when winter weather and / or storm-

level winds were recorded offer an insight into how ICT provides an alternative channel 

of access, with speeds significantly affected when demand increases due to adverse 

weather conditions, even though any telecommuting within this demand cannot be 

quantified. The final empirical chapter is premised on the potential for telecommuting 

to offer a resilient alternative for those all-important work trips which were prioritised in 
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the earlier chapters during weather risk and disruption. Thus, Chapter 8 offers an 

alternative translation of the potential sustainability of the non-work travel patterns of 

telecommuters using data from the English National Travel Survey. 

Finally, Chapter 9 concludes with a discussion of the findings, policy implications 

and future research. This thesis provides examples of how trends in increasing space-

time flexibility and ICT use currently manifest in travel behaviour and accessibility 

change during severe weather events, and adds to the literature by offering insights 

into some of the less evidenced responses in the options tree, such as prioritising work 

journeys over access to other activities or using online access from home to replace 

travel to other destinations. These findings are also linked back to the wider trends in 

the literature in order to identify the potential for policy, strategy, planning, and 

evaluation to encourage more sustainable and resilient behaviours.  
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2. THE RELEVANCE OF WEATHER TO TRANSPORT AND TRAVEL 
BEHAVIOUR1 

This chapter reviews how weather affects travel behaviour, transport infrastructure, 

and activity participation. The studies summarised in the following two sections can be 

divided into three broad areas of research, as shown in Figure 2.1: studies of the 

influence of daily meteorological parameters on travel, reviews and case studies of the 

impacts of severe weather events on transport services and infrastructure, and 

forecasts of the risks presented by climate change to transport delivery. Finally, some 

studies assess the vulnerabilities and dependencies between transport and other 

infrastructures, including ICT, to identify cascading threats. 

 
Figure 2.1: The study of Weather and Transport Interactions 

                                                           
1 The majority of this chapter has been published as: Budnitz, H, Chapman, L, Tranos, E. (2019) ‘Weather, travel 
behavior, and the influence and potential of ICT to improve resilience’ in Ben-Elia, E. (ed.) ATPP: The Evolving 
Impact of ICT on Activities and Travel Behaviour Volume 3. https://doi.org/10.1016/bs.atpp.2019.03.001. Also, 

to avoid repetition, some elements from the literature reviews from the author’s papers cited in Chapters 5-8 
have been integrated into this Chapter. 

https://doi.org/10.1016/bs.atpp.2019.03.001
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2.1 Impact of Weather on Travel Behaviour 

Among the external influences on travel behaviour and the availability and reliability 

of transport networks and services, the impact of weather parameters such as 

precipitation, temperature and wind-speed, has long been recognized by researchers. 

Studies have used a wide variety of statistical modelling techniques, socio-

demographic and other explanatory variables, and meteorological measurements in 

relative or absolute terms at daily, monthly or seasonal scales, to test how weather 

variations empirically affect travel patterns (Böcker et al., 2013). A few studies use 

stated and revealed preference techniques to assess whether and how people change 

their travel choices, including route, mode, timing, destination, or cancellation, in 

response to not only the weather, but also weather forecasts (Cools and Creemers, 

2013; Kilpelainen and Summala, 2007; Meng et al., 2016). Some surveys go even 

further, using extensive questionnaires to investigate travel behaviour more generally, 

focusing on how travellers respond to a combination of weather and travel information, 

and the influence of socio-demographic characteristics and work situation, such as 

flexible hours (De Palma and Rochat, 1999; Khattak and De Palma, 1997). Although 

these surveys might be described as traditional research methods, big data analysis 

techniques mean that many years of travel diaries, or records from sources covering 

millions of trips, such as traffic cameras, electronic ticketing transactions, mobile 

phones, and social media can be matched to weather observations and long-term 

patterns explored. 

Most of the research questions from these studies are hypotheses about the impact 

of weather on safety, mode choice, and trip volumes, with only a few investigating the 

subtleties of changes to route or travel timing, e.g. leaving more time to travel or 
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postponing travel until weather changes (Cools and Creemers, 2013; De Palma and 

Rochat, 1999; Khattak and De Palma, 1997; Koetse and Rietveld, 2009; Sabir et al., 

2010; Sabir, 2011). Pedestrians are disproportionately impacted by the weather and 

various studies focus on ‘active travel’ and seasonal outdoor activities (Böcker et al., 

2013; Liu et al., 2015). Researchers have used cyclist counts, travel diaries and route-

side surveys to determine that rain, and to a lesser extent, temperature – both extreme 

heat and cold, and strong winds can reduce the amount of cycling for utility or leisure, 

although the size of any switch to other modes is dependent upon the share of bicycle 

travel in the area of study (Böcker et al., 2013; 2019; Meng et al., 2016; Sabir, 2011; 

Saneinejad et al., 2012). There are indications that public transport patronage 

decreases in bad weather and increases in good weather, and although the 

percentage changes are small when studying large datasets from electronic fare 

collection, a wide selection of tests have shown statistically significant shifts in ridership 

and switches from bus to rail in adverse weather, the latter of which may be related to 

the facilities available, such as shelter at stops and stations, although public transport 

can also be affected by the discomfort of the active travel leg at the start or end of a 

journey (Guo et al., 2007; Hofmann and O’Mahony, 2005; Kalkstein et al., 2009; 

Singhal et al., 2014; Stover and McCormack, 2012). On the other hand, it is less clear 

whether the changes in travel behaviour by public transport users result in more or less 

dynamic accessibility, as different public transport services have different capacities 

and the impacts up- or down-stream are rarely fully considered (Cats and Jenelius, 

2014).  

Most studies of road traffic have focused on the effects of precipitation. The 

influence of rain has been measured in multiple ways, with well-documented 
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reductions in traffic speed, more frequent although less severe accidents, and 

increased congestion and resultant delays, particularly in denser, urban areas during 

already congested peak hours (Böcker et al., 2013; Cools et al., 2009; Hooper et al., 

2014; Jaroszweski et al., 2014; Sabir et al., 2008, Snelder and Calvert, 2016; Tsapakis 

et al., 2013). Research shows that where road networks are already operating close 

to capacity, such as in urban areas during rush hours, the impacts of even normal 

weather variations are much greater than in areas with spare capacity. A study of the 

influence of public transport strikes supports this conclusion, demonstrating the 

amount of congestion relief delivered daily by public transport services even controlling 

for weather in urban areas where car use is relatively low (Adler and van Ommeren, 

2016). Yet although congestion increases, there is evidence that rain can reduce the 

level of road traffic demand, dependent upon the mode shares of active or unsheltered 

travel that switch to private vehicles, the amount and intensity of the rain, and how 

weather parameters are modelled (Böcker et al., 2013; Cools et al., 2009; Snelder and 

Calvert, 2016; Sabir et al., 2010). 

Much more obvious effects are attributed to snowfall and accumulation. 

Observations, simulations, and stated / revealed preference surveys, the latter of which 

offer a multi-modal view of travel behaviour, all indicate that trip and likely activity 

cancellations are most likely to occur when snow is forecast or occurring, although less 

so in regions where snow is most common (Böcker et al., 2013; Cools and Creemers, 

2013; Kilpelainen and Summala, 2007; Kim et al., 2013; Sabir et al., 2010). This is not 

surprising, as snow is known to have significant negative impacts upon the resilience 

of physical assets and infrastructure, causing costly damage which can take some time 

to repair, and making it, along with flooding, a priority for transport authorities’ scrutiny 
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and review (Brown et al., 2014; Chatterton et al., 2016; Quarmby et al., 2010). 

Furthermore, as well as the risks snow and ice pose to the safety and availability of 

transport networks, the social impacts, of school closures for example, also have a 

major impact on travel behaviour (Marsden et al., 2016). Finally, some of the multi-

modal studies provide evidence that strong winds might be one of the more significant 

weather parameters reducing travel demand by 2% overall and public transport 

demand by 22%, whilst warmer weather, at least in the temperate climates studied, 

may induce modal shift from vehicular to active travel (Cools et al., 2010; Sabir et al., 

2010).  

Yet the extent to which ICT accessibility replaces or modifies travel during severe 

weather events is largely unknown. Many studies focus on a single mode, there are 

relatively few investigations into responses such as changing destinations or cancelling 

trips, and although there is some indication that closer destinations are favoured for 

non-work trips during adverse weather, many of these studies exclude home-based 

activities and the use of ICT for telecommuting or other activities during severe weather 

events or over the longer term as experience of disruption increases (Cools and 

Creemers, 2013; Kaufman et al., 2012; Koetse and Rietveld, 2009; Liu et al, 2015; 

Marsden et al., 2013; Sabir, 2011). One reason such responses are included in so few 

of the studies cited in this section is that this area of literature includes many more 

longitudinal studies that track the relationships over time between rainfall, wind speeds, 

and other weather parameters and changes in trip numbers, vehicle speeds, and 

modal splits. Whilst longitudinal data from weather records may correlate to flooding 

or fallen trees, identifying quantitative thresholds of weather variables that cause 

sufficient transport disruption often enough in the timeline studied to be statistically 



17 
 

significant is challenging even if issues like time of day, the “intensity of use, the 

availability of alternatives and the economic importance of the route or service” are 

considered (Brown et. al, 2014, p.9; Mitsakis et al., 2014). Thus, longitudinal studies 

may struggle to disentangle the response to weather from the response to weather 

impacts and to capture both where and when specific impacts such as road closures, 

rail cancellations, and other disruptions occur that may affect space-time constraints 

and make online access more necessary. 

The alternative approach is to assess the response to a case study of an identified 

weather event in a particular place where known disruption occurred. This approach is 

commonly pursued by governments following major weather events, where estimates 

of the direct and indirect impacts, including the ‘welfare costs’ of delays, closures, 

cancellations, incidents, lost productivity, and any lengthy repair and recovery periods 

are calculated (Beiler et al., 2016; Brown et al., 2014; Chatterton et al., 2016; Quarmby 

et al., 2010). There are also many case studies undertaken over various geographies, 

such as one that calculated the total impact of the UK-wide storms on 28 June 2012 

upon the national rail and road networks (Jaroszweski et al., 2015), whilst a study 

focused on the urban area of Newcastle-upon-Tyne on that day measured traffic flows 

on the network to locate critical points and possible mitigation scenarios (Pregnolato 

et al., 2016). Other examples track the impacts of hurricanes in the United States 

(Kaufman et al., 2012; Lee et al., 2009), or natural disasters around the world (Wang 

and Taylor, 2016). Often, such studies make assumptions about how people were 

affected during extreme weather using comparisons to an ‘average’ day or transport 

models built to represent ‘average’ daily mobility, rather than consider how people 

might change their behaviour (Brown et al., 2014; Chatterton et al., 2016). Thus, the 
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engineering solutions for redundancy or recovery, the operational changes, and 

strategic and emergency planning coordination, ranging from the identification of 

diversion routes to flood defences and raising or moving infrastructure, tend to be 

based on similar assumptions (Beiler et al., 2016; Suarez et al., 2005).  

However, many would agree that the severity of the impacts is dependent upon 

patterns of human behaviour such as intended activities, the time and location at which 

the event and disruption occurs, how they are perceived, and whether and when 

information about the weather event or disruption is available (Beiler et al., 2016; 

Dawson, 2016; Marsden et al., 2013). There is a recognition of the importance of 

developing a clear messaging strategy to keep the public informed and instil 

behavioural resilience, even within studies modelling simulated travel during severe 

weather without the benefit of real-life observation from either qualitative survey 

methodologies after known disruption or the exploration of alternative indicators and 

thresholds (Beiler et al., 2016; Kim et al., 2013; Snelder and Calvert, 2016; Suarez et 

al., 2005). Future scenario planning for resilience to severe weather and disruption 

must include options both for the physical re-design of infrastructure, and also for 

strategies addressing behavioural resilience and response, with decision-makers able 

to choose what will best enable adaptation or recovery in specific communities 

(Jaroszweski et al., 2014; Rogers et al., 2012). In either case, ICT is critical. 

2.2 A Comparison of Infrastructure Resilience 

The importance of ICT to resilience, both infrastructural and behavioural, is most 

obvious when it is not available. In Lancaster, UK, the floods caused by storms and 

ground saturation in December 2015 not only cut major transport links, including a 

motorway junction and central bridges, but also resulted in a power outage that 
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rendered all fixed internet access as well as the base stations that enable mobile 

access in the area inoperable, except for a few buildings with emergency generators, 

like the hospital and the local radio station (Ferranti et al., 2017). This is an example 

of the cascading threat to the ‘system of systems’, where the interdependencies within 

and between infrastructure networks mean that failure in one area instigates failure in 

another, not only in relation to various transport networks, but also to electricity, water 

and ICT systems, which is a major risk of climate change (Chapman et al., 2013; 

Horrocks et al., 2010). Cascading threats can also affect behavioural resilience, even 

if there is a lack of consideration of traveller reactions and demand-based measures 

in many of the climate change risk analyses (Mattson and Jenelius, 2015). In 

Lancaster, the local radio, plus a few public payphones, became for many the sole 

source of updates and information from emergency services and others (Ferranti et al., 

2017). Therefore, local residents struggled to learn what services and infrastructure 

were still operational, and had no ability to substitute online access if transport access 

was unavailable. In this case, ICT could not help coordinate the emergency response, 

provide information on unaffected transport links, nor enable the participation in work 

and other activities. The resilience of ICT in the area, and its importance in the 

resilience of other infrastructure networks had not been considered. Fortunately, 

however, systems theory also means that there are always multiple ways to improve 

resilience (Rogers et al., 2012), including optimizing the inherent resilience of ICT 

infrastructure and its lower vulnerability to cascading threats as shown in Figure 2.2.  
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Figure 2.2: A simplified comparison of cascading threats from ICT or Transport failure 

Although dependent upon energy infrastructure for uninterrupted operation as in the 

case described above, ICT infrastructure and topology is generally more robust, at 

least at a strategic level, than transport infrastructure to both weather events and a 

changing climate (Chapman et al., 2013). Some reasons are the international design 

of many components built for weather extremes rarely seen in temperate climates, the 

frequent asset replacement as a result of the speed of technological development, and 

the often built-in redundancy between fixed and mobile services and competing 

providers (Fu et al., 2016; Horrocks et al., 2010; OfCom, 2014). If ISPs planned and 

prepared for weather events more proactively, using ‘risk-aware’ routing, spare 

capacity, or other optimisations, ICT could be even more robust (Mukherjee et al., 

2014). Yet, as the majority of faults for telephone and broadband infrastructure tend to 

be local and residential due to built-in redundancy at the strategic level, risk 

assessments by Internet Service Providers (ISPs) focus more on customer service, 
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maintenance and standards, rather than resilience and the potential for a national 

emergency (Lazarus, 2013; 2014; Schulman and Spring, 2011).  

In comparison, transport infrastructure systems are often older, public or publically 

subsidized, with national railways and local bridges in particular lacking redundancy, 

all of which make transport less resilient to severe weather events, especially where 

there has been a lack of investment and maintenance back-logs (Brown et al., 2014). 

Railways, for example, are particularly at risk in high temperatures due to inadequately 

stressed rails and electrical failure or sagging overhead lines, whereas ICT lines are 

often designed to withstand temperature extremes (Dawson, 2016; Dobney et al., 

2009; Ferranti et al., 2016). Transport networks are also dependent upon the 

availability of energy and ICT infrastructure for key elements of operation, whilst ICT 

infrastructure is only dependent upon transport where repairs are needed, and 

engineers struggle to access the relevant points in the network (Horrocks et al., 2010).  

Various studies have reviewed the robustness of transport networks, from road and 

rail to air and inland waterways by using empirical data from past severe weather 

events to speculate on the likely impacts of extreme weather conditions which will be 

more prevalent as the global climate continues to change: storms, fluvial, pluvial and 

coastal flooding, heatwaves, heavy rain and high winds (Dawson, 2016; Jaroszweski 

et al., 2014; Koetse and Rietveld, 2009; Snelder and Calvert, 2016). Such events 

appear likely to replicate the risks of snow to ‘normal’ dynamic accessibility by likely 

causing road closures, rail cancellations, and school closures, and thus similarly 

affecting travel behaviour, even if snow events and freezing temperatures themselves 

occur less often under future climate change scenarios. Research and risk analysis 

suggests that transport infrastructure is more vulnerable to these severe weather 
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events due to impacts such as storm surges in coastal areas, depth of floodwaters, 

landslips, sinkholes, coastal erosion, and trees falling in the heavy winds, than to the 

more gradual climate changes in temperature or precipitation (Brown et al., 2014; 

Dawson, 2016; Jaroszweski et al., 2010; Koetse and Rietveld, 2009). Energy and ICT 

infrastructure are also more vulnerable to severe weather events than to other climate 

changes, but in their case, high winds, gales, and particularly lightning cause many 

more faults than flooding or snow, and the speed of technology upgrades make it 

easier to augment the robust nature of ICT infrastructure by designing in resilience 

(Dawson, 2016; Deljac et al., 2016; Horrocks et al., 2010; McColl et al., 2012).  

For example, where ICT connections use historic copper wires originally installed 

for voice telephony, they may be unsuitable for high bandwidth applications and face 

reduced asset life and additional maintenance, compounded by increased 

temperatures and humidity (Lazarus, 2013; 2014; OfCom, 2014; Schulman and Spring, 

2011). Fibre-copper hybrid networks are also vulnerable to extreme weather events 

such as the one described above in Lancaster, UK, whereas a network of robust optical 

fibres not only from hubs to street cabinets, but also between a hub and individual 

residences is much more resilient as was seen during the same weather event in 

nearby rural areas, which maintained their ICT connections (Brunnen, 2016). ICT 

infrastructure is also sometimes housed in historic industrial buildings located on 

floodplains, and is known to become inaccessible to repair teams if transport routes 

are blocked, especially if there are no clear lines of responsibility within the sector for 

emergency response or incorporating strategic planning for resilience as the 

technology is refreshed (Horrocks et al., 2010; Lazarus, 2014; UKCIP, 2013; Schulman 

and Spring, 2011). Therefore, the challenge becomes one of governance and policies 
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to reinforce the robust nature of ICT infrastructure, which is why it is important that ICT 

is not viewed as a ‘critical’ infrastructure in isolation, but one upon which many other 

infrastructures and behaviours are dependent (Horrocks et al., 2010).  

In summary, section 2.1 reviewed the breadth of literature investigating the impact 

of weather variation on travel behaviour as well as the post-event government reports 

and academic studies on the impact of severe weather events on transport 

infrastructure. The research reviewed in section 2.1 offers insights into the prominence 

of some of the behavioural changes depicted in Figure 1.2, but few studies include the 

substitution of online access, changes to the choice of destination, or the implications 

of prioritising certain journey purposes. Most do not analyse the changes to travel 

behaviour during disruptions caused by more extreme weather events either, and 

those that do are too narrow in scope to allow insights into how any response may 

have been shaped by geography, socio-demographic trends, or improving ICT. Section 

2.2 describes how and why ICT infrastructure is more resilient to weather disruption 

than transport infrastructure, with OfCom estimating that a mere 1% of incidents 

reported to them between September 2013 and August 2014 were caused by severe 

weather, a period that included extreme rain and flooding events (2014). Although 

there is not a comparable figure for transport infrastructure, this is an indication of the 

importance and potential of ICT to improve access behavioural resilience which, as 

explored in the following sections, could augment the case for better governance and 

integration of ICT into adaptation and emergency planning. 
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3. THE RESILIENCE POTENTIAL OF CHANGES IN SPACE-TIME 
FLEXIBILITY AND ICT2 

Various studies have investigated the resilience of transport systems in terms of 

how reliable or vulnerable infrastructure is and whether, instead of simple repair, 

proactive redesign might aim for robustness or resistance to damage, redundancy, or 

quick recovery and stabilization (Mattson and Jenelius, 2015; Rogers et al., 2012; 

Wang, 2015). Yet the interaction of transport infrastructure and services with patterns 

of human behaviour, mobility, and ICT use means that physical adaptation of transport 

systems is only part of the solution, whilst mitigation, coordination, and communication 

could offer more flexible, immediate ways to respond to disruption caused by weather 

or other events (Cox et al., 2011; Jaroszweski et al., 2014; Rogers et al., 2012). ICT 

and transport are both ‘general purpose technologies’ that are integral to many sectors 

of the economy, catalyse innovation in those sectors, and change the geography of 

activities people want to access (Karlsson et al., 2010). Both are industries of ‘derived 

demand’, providing access to satisfy desires for goods, services, employment, leisure, 

and information, whilst minimizing the costs in terms of time and distance and 

balancing preferences and attitudes, ignoring any ‘undirected’ travel (Banister, 2008; 

Mokhtarian and Salomon, 2001; Van Acker et al., 2010). The ongoing digital revolution 

means that transport and the internet can be seen as ever more interchangeable, 

flexible, and seamless options for increasing accessibility (Lyons, 2015).  

                                                           
2 The majority of this chapter has been published as: Budnitz, H, Chapman, L, Tranos, E. (2019) ‘Weather, travel 
behavior, and the influence and potential of ICT to improve resilience’ in Ben-Elia, E. (ed.) ATPP: The Evolving 
Impact of ICT on Activities and Travel Behaviour Volume 3. https://doi.org/10.1016/bs.atpp.2019.03.001. Also, 

to avoid repetition, some elements from the literature reviews from the author’s papers cited in Chapters 5-8 
have been integrated into this Chapter. 

https://doi.org/10.1016/bs.atpp.2019.03.001
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Thus, if resilience hinges upon the ability or capacity to avoid or minimize delay, 

disruption, and risk to personal safety and property, ideally maintaining an acceptable 

level of accessibility to intended activities, then ICT has a number of roles to play, as 

shown in Figure 3.1. ICT has enabled a step-change in the provision of travel 

information, making it an essential part of coordination and communication between 

the public and those with responsibility for transport services and for contingency / 

emergency planning during disruption from severe weather. ICT has changed how, 

when, and where people access activities, which can mitigate the risks and enable 

some to avoid disruption through online access or other temporal and spatial flexibility. 

Finally, ICT trends have resulted in the delivery of new transport services, facilities, 

and interactions, which could speed and enhance recovery following disruption. The 

influences and impacts of ICT on information, flexibility, productivity, lifestyles, 

transport services, and travel behaviour are growing areas of research, but the value 

of this in terms of resilience has been explored in much less detail. Thus, this chapter 

considers not only the research directly addressing resilience benefits from ICT, but 

also that related to the influence of ICT on accessibility which underlies the potential 

for enabling more resilient access behaviours in the future. 
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Figure 3.1: The study of ICT and Transport Interactions 

3.1 Information Increases Efficiency: the next best thing to reliability? 

Severe weather events can cause substantial disruption to transport networks and 

services, including not only road closures and rail cancellations, but also delays due to 

road traffic incidents, congestion, diversions, and speed restrictions. Delays increase 

individuals’ capability constraints as they cannot be physically present at an activity if 

they are stuck somewhere on the transport network, and the increased time in transit 

reduces the time available for the activity. However, ICT has a major role to play in 

reducing temporal inefficiencies through travel information. Surveys have indicated 

that travellers’ greatest concern is not the cost or total journey time, but rather the 

reliability of journey time for different modes or routes when used regularly (Lyons, 

2006; Wang et al., 2009). Thus, it is not surprising that even when there is no adverse 

weather or other disruption, the demand for real-time, mobile journey planning is 

increasing and those who use such services are more likely to change their travel plans 

or have more flexible travel patterns (Wang et al., 2009; Wockatz and Schartau, 2015). 



27 
 

Indeed, over half of the 78% of UK adults who use a smartphone consider it essential 

for travel purposes and would share their data in exchange for improved services 

(OfCom, 2018; Wockatz and Schartau, 2015). Even basic information from variable 

message signing can encourage diversions, reducing local queueing, and potentially 

reduce travel times on a network with spare capacity elsewhere (Chatterjee and 

McDonald, 2004). More recent ICT developments allow travel information to be 

combined with location-based services to enable users to be notified of the quickest 

route to access goods, participate in activities, or to find others in their social network, 

all based on where they are at a given time (Arribas-Bel, 2014; Ratti et al., 2006). This 

can result in an increase in short, multi-purpose, linked trips to ‘other’ locations, for 

example if leisure opportunities are available near the workplace, and is one reason 

that direct home-work commuting is in decline (Astroza et al., 2017; Le Vine et al., 

2017; Phithakkitnukoon et al., 2010; Wang and Law, 2007). Yet it also can have a 

substantial impact upon the ability to change timing, route, or mode of transport during 

a severe weather event or other disruption.  

Information is often sought in response to the expectation of disruption, with an 

increased engagement and an improved perception of the reliability of alternative 

services if trustworthy information on delays, diversions and other options is available 

(Chorus et al., 2006; Cottrill et al., 2017; Lyons, 2006; Pender et al., 2014). The 

transport authorities in New York recorded large increases in the number of Twitter 

‘followers’ before major storms and hurricanes, with few then ‘unfollowing’ after the 

event, suggesting that the overall level of engagement, and the rapidity and flexibility 

of future response increases through use of ICT (Chan and Schofer, 2014). Another 

study that used Twitter’s geotagged data from natural disasters occurring around the 
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world in 2013 and 2014 concluded that human mobility patterns in the most general 

sense of an individual’s spatial area of travel and activity are highly resilient, and 

remain predictable in all but the most extreme scenarios (Wang and Taylor, 2016). As 

this study was informed by big data from an ICT source, one additional conclusion 

might be that ICT itself through geo-tagged social media was assisting users in 

maintaining their activity spaces. In Hong Kong during the Occupy Central Movement, 

the metro rail system was more resilient, and had enough spare and added capacity 

to cope with well-informed travellers shifting from disrupted road-based transport (Loo 

and Leung, 2017). In London during the 2012 Olympics, an extensive information, 

awareness and incentives campaign to minimise both disruption to normal travel and 

any negative experience of visitors to the Games generated substantial travel 

behaviour change during the games, and some sustained change afterwards (Parkes 

et al., 2016).  

Meanwhile, data and records of the use of ICT by travellers can enable transport 

authorities and operators to make their services and information more efficient and 

relevant, providing real-time information to the right people in the right places during 

disruption, and creating a feedback loop that results in yet more efficient, sustainable, 

and resilient alternatives (Cats and Jenelius, 2014; Haworth et al., 2014; Nair et al., 

2013). Apps and social media can encourage participation in this process, as they 

enable both the reporting of obstacles such as fallen trees and also requests for advice 

on alternatives (Cottrill and Derrible, 2015; Cottrill et al., 2017). Weather data is 

important too, although false warnings could actually reduce the level of response, so 

coordination between weather authorities, transport authorities or operators, and 

others who have a clear understanding of the timing, location, and extent of any 
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potential impacts is essential (Lee et al., 2009). Yet the fewer the choices of modes 

and the longer the distance, the more likely not only that the available transport 

infrastructure or services will be disrupted by severe weather, but also that, if disruption 

is lengthy or recurrent, travellers will be forced to make decisions about rescheduling 

and relocating activities (Marsden et al., 2013). There is evidence that when faced with 

such decisions, people prefer advance planning, known routines, and space-time 

flexibilities with which they are already familiar, e.g. telecommuting (De Palma and 

Rochat, 1999; Marsden et al., 2016). 

3.2 Telecommuting and Spatial Redundancy 

Multi-modal studies in three different European countries indicate adverse weather 

results in the postponement or cancellation of many leisure journeys, but that 

commuters rarely cancel their trips, but may change mode, route, and timing of travel, 

with the latter being most common (Cools and Creemers, 2013; De Palma and Rochat, 

1999; Khattak and De Palma, 1997; Sabir et al. 2010). This is because regularly 

employed commuters tend to prefer routine, organize their day around work 

obligations, and have less discretion to choose not to travel (De Palma and Rochat, 

1999; Le Vine et al., 2017). Indeed, on a daily basis, people’s activities are least 

affected by changes in the weather during the normally compact morning rush hour 

between 8 and 9 AM (Horanont et al., 2013), more variable in the evening peak, partly 

because people appear to choose to leave work earlier or later during bad weather 

(Singhal et al., 2014), and most affected on the weekend when not just the travel, but 

also the activity itself may be cancelled due to bad weather (Arana et al., 2014; Sabir 

et al., 2008). This ‘fixed’ nature of work in time and place is largely due to coupling and 

authority constraints, such as the need for joint or team working, meetings, delivery of 
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services to clients and customers, and management oversight. Yet that is changing as 

various spatially and temporally flexible working patterns including telecommuting or 

using ICT to replace all or some of the journey to and from work, are increasing, even 

if a lag in employer support has resulted in a slower trajectory than researchers might 

have expected (Cairns et al., 2004; Felstead, 2012; Siha and Monroe, 2006). 

Furthermore, the stated desire for telecommuting and the flexibility to work from home 

once or twice a week suggests considerable suppressed demand, particularly among 

women and part-time workers, fewer of whom telecommute regularly, but who are 

more likely to say they want to, perhaps due to additional care-giving responsibilities 

(Headicar and Stokes, 2016; Lavieri et al., 2018; Singh et al., 2013). 

The level of telecommuting can be difficult to measure, as it is counted in different 

ways by different surveys, and depends upon the type of employment: directly 

employed, indirectly employed, self-employed, full-time, part-time; the definition of 

place: home, on transport, in alternative locations; the definition of time: full-days, part-

days, overtime; and the work tasks (Allen et al., 2015; Bailey and Kurland, 2002; 

Haddad et al., 2009; Felstead, 2012). However, in all these definitions, telecommuting 

is reducing coupling constraints. For example, one of the material benefits of ICT is to 

reduce production costs through remote oversight, so early telecommuting practices 

often took the form of low-paid clerical work under contract or agency employment as 

firms used ICT to manage remote workers (Bailey and Kurland, 2002; Karlsson et al., 

2010). Subsequently, the development of ICT and the knowledge economy with its 

autonomous, task-based work culture has been a fundamental component in changing 

patterns of work (Felstead and Henseke, 2017). Studies from the United States, the 

Netherlands, and the UK indicate that telecommuters are now most likely to be found 
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among the professional, better educated, more internet-savvy sectors of the 

population, and many firms feel that to attract such people, flexibility needs to at least 

be available even if it is not chosen (Ellen and Hempstead, 2002; Headicar and Stokes, 

2016; Peters et al., 2004; Singh et al., 2013; Walls et al., 2006).  

As the popularity of telecommuting increases, it offers greater opportunities for 

increasing resilient travel behaviours, especially if employers are proactive. For 

example, the United States Federal Government’s Telework Enhancement Act of 2010 

required remote working be included in emergency planning strategies for its 

employees, and it was reported that a third of government employees telecommuted 

during Hurricane Sandy (Allen et al., 2015). Even without this strategic planning, a UK 

study surveying people in areas affected by the 2013-14 floods, a snow event in 2013, 

and the closure of a major road bridge in Scotland found evidence that some 

commuters adapted by working from home and from alternative destinations, or by 

temporally flexible working such as delayed starts and compressed work weeks 

(Marsden et al., 2016). Similar evidence was found in American studies of other major 

road / bridge closures and of commuters who were not employees of the Federal 

Government during Hurricane Sandy, the latter indicating that people also used ICT to 

‘crowdsource’ shared transport and flexible office space with electricity (Kaufman et 

al., 2012; van Herick et al., 2012; Zhu et al., 2010). A large increase in internet traffic 

was tracked in London during a major snow event in 2018, which may have been due 

to increased remote working (Stubbings and Rowe, 2019). Commuters can also use 

ICT to coordinate non-work coupling constraints, such as arranging a trusted surrogate 

to pick up children when the parent, usually the mother, who may dedicate substantial 
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time and effort to building networks of such surrogates, is delayed by disruption 

(Schwanen and Kwan, 2008). 

Indeed, as developments in ICT, particularly cloud computing and 3-5G mobile 

internet enables access to information anywhere at any time, even when stranded on 

transport services, ever more people can participate in activities, including work, from 

unspecified locations (Lyons, 2018; Messenger and Gschwind, 2016). This may be 

beneficial during disruptions in the short term, but the debate over its longer-term 

sustainability and adaptive capacity continues. The potential for avoiding congestion 

in real time or connecting and multi-tasking in a traffic jam influences the marginal costs 

of time spent travelling, which is a concern for those attempting to forecast the potential 

use, benefits and impacts of both ICT and new transport technologies (Le Vine et al., 

2015; Kwan et al., 2007; van Wee et al., 2013). A Canadian study suggested that 

mobile ICT increases the number of trips, distance travelled and therefore emissions, 

whilst a study from the UK correlates virtual accessibility, measured by variables such 

as possession of an ICT device and subscription to / coverage of a network, to more 

discretionary trips and longer distance tours (Lavieri et al., 2018; Miranda-Moreno et 

al., 2012). One international study questions whether the reduction in transport spend 

due to use of ICT for access implies less travel or enables more efficient travel over 

more dispersed networks (Bris et al., 2017).  

Researchers speculate whether the long-term effects of ICT on travel demand will 

be more population dispersal and sprawl, as those who telecommute often live further 

from their workplace, but not only is the direction of this effect unclear, but also it is 

dependent upon geographic and economic characteristics, and whether the study 

includes only telecommuters, or their households, colleagues or the wider population 
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(Choo et al., 2005; de Abreu e Silva and Melo, 2018; de Vos et al., 2018; Ellen and 

Hempstead, 2002; Gubins et al., 2017; Hu and He, 2016; Kim, 2017; Qin et al., 2016; 

Zhu, 2013). Indeed, there is a socio-economic dimension to who is likely to be able to 

telecommute and whether they have the authority to decide when and how often they 

do so. If increased telecommuting does result in more travel and more sprawl, this 

might reduce the travel modes and options available, resulting in less dynamic 

accessibility and resilience. However, the flexibility telecommuting offers to coordinate 

with others, especially for work activities, and to avoid disruption, by staying home and 

reducing the pressure on key routes needed by emergency responders, indicates there 

is substantial scope for ICT to increase overall resilience and offer redundancy of 

access with appropriate interventions in transport, ICT, and land use planning. 

3.3 Recovery and Long-term Change 

ICT can relax the fixed nature of work travel for some categories of workers, but not 

for all, and not for an indefinite period of time. Telecommuting from home or alternative 

spaces may increase over a period of extended disruption perhaps because there are 

additional opportunities for communication between employers and employees using 

ICT after a weather event (Kaufman et al., 2012; Marsden et al., 2016). Yet, for those 

whose work is fixed in time and space because a manual task cannot be done 

elsewhere or a face-to-face interaction is required, then ICT enables the relaxation of 

other constraints on the spatial and temporal availability of services. ICT can direct 

people to local facilities of which they may not be aware, or help them continue to travel 

through ride-sourcing and reinforcing messages from the authorities about 

replacement options as networks recover (Loo and Leung, 2017). Online shopping and 

personal services such as banking and health offer more access outside business 



34 
 

hours, and reduce the risks of travelling in severe weather, even if goods must be 

delivered at some point (Andreev et al., 2010; Chatterjee et al., 2018; Headicar and 

Stokes, 2016; Rohr et al., 2016). Personal business, food shopping, and other 

necessary if flexible trips may be undertaken on route to or from work as linked trips to 

increase travel efficiency and dynamic accessibility, although telecommuters cannot 

make such trips when they work from home and shift workers are limited by service 

opening hours (de Abreu e Silva and Melo, 2018; Allen et al., 2015; Järv et al., 2018; 

Susilo and Kitamura, 2005; Zhu, 2012). Likewise, many more commuters are limited 

by more time-consuming travel between work and home during disruption, such that, 

along with postponement and cancellation of non-work trips, reduced opportunity for 

linked trips is another response to adverse weather.  

However, if work is available over the internet, perhaps other activities and services 

can be made available within walking distance, as adverse weather like extreme cold 

and flooding was associated in two studies with less disruption of active travel trips and 

increased walking distance (Marsden et al., 2016; Sabir et al., 2010). In another study, 

snow was also positively associated with more walking trips by commuters (Liu et al., 

2015). Positive integration of urban planning and form can thus enable communities to 

make sustainable and resilient travel choices (Headicar, 2015; Hickman et al., 2013), 

and with the rise of telecommuting and other forms of flexible working, the push to 

increase sustainable travel choices must include non-work trips. Transport accessibility 

is dependent not only on the time, cost, or distance parameters of the transport 

systems and networks available, but also the gravitational pulls of land use, distribution 

of population and jobs, and the form of the built environment (Banister, 2008; Halás et 

al., 2014; Martinez and Viegas, 2013; Reggianni et al., 2011). If jobs and populations 
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are unlikely to be distributed evenly, particularly if viewed in terms of employment 

sectors and labour skills, so flows are also unlikely to be even (Reggiani et al., 2011; 

Uboe, 2004). This uneven-ness can be exacerbated by ICT, as it undermines the 

traditional assumption that the main trade-off in residential location choice is between 

house prices and commuting costs (Clark et al., 2003; Ma and Banister, 2006). 

Telecommuters tend to live further from their regular workplace than those who don’t 

telecommute, and although they may choose suburban or metropolitan areas with a 

diversity of jobs, employment and residential areas in the 21st century are often 

dispersed (de Abreu e Silva and Melo, 2018; Chowdhury et al., 2013; Ellen and 

Hempstead, 2002). Yet there is evidence that telecommuters travel more for activities 

like shopping and personal business, particularly those who live in mixed use 

neighbourhoods or areas of higher density (Asgari and Jin, 2017; Loo and Wang, 2018; 

Singh et al., 2013). Furthermore, even though trip chaining is associated with travelling 

further, perhaps because it often accompanies longer-distance commuting trips, 

people who live in high density areas are more likely to undertake complex trip chains 

yet travel shorter distances (Chen and Akar, 2017).  

There is much academic speculation around whether ICT ‘dematerializes’ various 

goods and activities, making distance and geography less important in consumer 

choices and awareness of far-flung options, such as residential location or social 

connections, or whether the fragmentation and dynamism it introduces could increase 

the desire for dense, urban living and have a complementary impact on urban 

agglomeration and growth (Circella and Mokhtarian, 2017; Lyons, 2015; Qin et al., 

2016; Tranos and Ioannides, 2015). For adaptation as well as mitigation purposes, 

policy and decision makers must discourage the former and encourage the latter. 
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Planning for services, shopping, and facilities in suburban areas can enable residents 

to make these trips by foot or bicycle if they so choose, and maintain access when 

more distant centres are made inaccessible by weather. About 20% of any given 

population are estimated to change jobs or move home each year, and whilst many of 

these individuals also change their mode and pattern of commuting, the choice to move 

home or job is influenced not only by commuting costs, but are also by socio-

demographics, urban form, and the cost of moving itself (Clark et al., 2016; Dargay 

and Hanly, 2007; Van Acker et al., 2010; Van Ommeren et al., 1999). If ICT is reducing 

the importance of commuting costs to these decisions, then other factors like urban 

form or the presence of children in the household become more relevant, and planning 

neighbourhoods with key facilities has greater potential to increase the number of 

sustainable and resilient neighbourhoods over sprawling, car-dependent suburbs. 

In conclusion, this section of the literature review demonstrates that ICT can enable 

a more resilient response to extreme weather events and other forms of disruption, 

particularly planned events or when unplanned disruption lasts long enough for 

coordinated communication of not only the problems, but potential solutions. It also 

shows there are numerous studies considering whether telecommuting and other 

online access practices are sustainable, but few of these consider the resilience or 

adaptation aspects of sustainability. Furthermore, analysis into the interactions 

between access to work and access to other activities by transport and ICT modes is 

very much an emerging field and the full potential of the co-benefits that might be 

realised by integrated planning of transport and ICT access to a variety of daily 

activities requires substantial further research. Together, Chapters 2 and 3 identify the 

gaps in the literature to which the empirical chapters of this thesis aim to contribute.  
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4. DATA AND METHODOLOGY 

This research project takes a quantitative approach to analysing the relationship 

between severe weather and changes in dynamic accessibility, including both travel 

and online access. As demonstrated in the literature review, weather impacts vary in 

space and time, and any response to them cannot be measured until after they occur. 

Thus not all data sources and methodologies are suitable for analysing the overarching 

research question. The volume, velocity, and variety of big data has the spatial breadth 

to map accessibility across relatively detailed geographies, and the longitudinal extent 

to compare patterns during selected case studies of storms or extreme weather to 

periods with more typical weather conditions. Furthermore, although the purpose of 

these secondary data sources and data privacy rules prevent in-depth analysis of the 

behaviour and characteristics of individuals, open socio-economic, demographic, 

geographic, and weather data can be matched to such big data sources by time and 

neighbourhood. This enables the addition of many of the control variables that are 

known to influence accessibility choices, irrespective of the weather. Such variables 

provide insights in both exploratory and econometric methodologies, which can then 

be considered further through more traditional data sources, such as surveys. The rest 

of this chapter discusses the opportunities and obstacles of different data sources, the 

methodologies which are appropriate for their analysis, and summarises which data 

and techniques are used in the empirical chapters, where more detailed context, 

sources, descriptive statistics, and equations are provided. 

4.1 The Opportunities and Obstacles of Different Data Sources 

Both transport supply and demand are affected by variability and uncertainty of 

travel times, cost, and safety during extreme weather events, among other factors, 
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both within and outside of the control of the travellers who are making choices based 

on imperfect information (Bonsall, 2004). Even excluding extreme weather and climate 

change, uncertainty is growing due to the shifting economy, increased urbanisation, 

and disruptive technology, both within and outside of the transport sector (Marsden et 

al., 2018). These uncertainties apply differently to individuals depending upon a variety 

of socio-demographic characteristics which are relevant to both ICT penetration / 

service levels / use and to travel choices and behaviour; including wealth, education, 

deprivation, age, presence of children, and urban or rural living, each of which can be 

aligned to neighbourhood classifications and household features and can also vary 

spatially (Blank et al., 2018; Clark et al., 2016; Cottrill, 2018; Hauge et al., 2010; Hincks 

et al., 2018; Longley et al., 2008; Lovelace et al., 2014; Philip et al., 2017; Riddlesden 

and Singleton, 2014). Considering the relevance of such socio-demographics, a 

number of studies in the literature review highlight the benefits of using either stated or 

revealed preference surveys to determine how individuals would respond or had 

responded to different weather conditions (Böcker et al., 2013; Cools and Creemers, 

2013; Khattak and De Palma, 1997; Meng et al., 2016).  

However, due to the nature of severe weather, any disruptive impacts can only be 

confirmed after the fact, and few of these studies using primary data fully explore 

whether telecommuting or other ICT had been employed to overcome transport 

disruption, and there is even less evidence as to whether changes during disruption 

had an influence on long-term behaviour (Marsden and Docherty, 2013). Furthermore, 

those few case studies that do document such responses, whilst enlightening, are 

neither spatially nor temporally extensive due to the resource required for primary data 

collection, obscuring any trends. Meanwhile, larger, representative surveys rarely 
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capture the response to irregular events, even if they can provide substantial detail on 

travel behaviour choices, use of ICT, and the access response(s) during typical 

weather variation (Sabir et al., 2010). Also, UK Government advice specifically 

recommends avoiding “times of extreme weather” when planning surveys, and that 

“data collection needs to be repeated if an unforeseen event occurs (such as an 

accident or adverse weather)” (Department for Transport, 2014, p5). Thus, surveys 

and travel diaries are useful to glean behavioural trends, such as the insights into the 

frequency of telecommuting and how often people travel for different purposes as 

explored in Chapter 8 using the NTS. They improve understanding of wider trends in 

space-time flexibility, such as the influence of geography on travel behaviour or the 

prevalence of trip chaining (Chen and Akar, 2017; Lavieri et al., 2018). However, to 

analyse actual access choices made during severe weather conditions, secondary 

sources of big data, generated and collected on an ongoing basis for other purposes, 

offer opportunities for behavioural records from the day of an extreme weather event, 

documenting responses such as awareness on social media, the detail of destination 

choice, and the change in passenger numbers on a diverted public transport service 

(Cottrill and Derrible, 2015).  
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Figure 4.1: Trade-offs between sample size and detail of response by data source 

Figure 4.1 provides a graphical representation of how automated, digitally collected 

‘big’ data sources are likely to provide much more spatial and temporal granularity due 

to their large sample sizes. Thus, through matching to additional data sources, they 

reveal information about exposure to various environmental parameters. Big data 

sources contain less direct information on the access choices made by individuals, and 

even less so their motivations. However, although every data source has its own 

advantages, limitations, and biases, one of the aims of this research was to use 

secondary data sources which could enable a quantitative approach to assessing the 

influence of geographic and socio-economic characteristics on changes in space-time 

accessibility during cases of severe weather. Thus, three of the empirical chapters 

mainly utilise a variety of big data sources, whilst Chapter 8 uses the National Travel 

Survey, which, due to its size and consistency also enables the application of 

quantitative methodologies.  
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Many big data sources are internal to the transport sector, including electronic 

ticketing, traffic count loops, journey planners and other navigational aids or digital 

mobility platforms, CCTV and ANPR cameras, GPS trackers and on-board computers 

on public transport, freight and other vehicles, and sensors on transport infrastructure. 

The data are usually collected automatically by operators, authorities or other 

responsible parties for commercial or statutory purposes including the management, 

safety and security of transport networks and vehicle fleets, and to improve their 

reliability, efficiency, and comfort for users (Ricci et al., 2012). However, as reviewed 

above, a number of studies have used data from these sources to determine how 

weather and seasonal change influence passenger numbers on public transport, traffic 

volumes or speeds (Guo et al., 2007; Kalkstein et al., 2009; Cools et al., 2009; 

Tsapakis et al., 2013). Chapter 5 also uses the data generated by electronic ticketing 

transactions, but adds to this body of literature by focusing on an impactful winter storm 

rather than daily variation. 

Transport data sources offer the potential to understand changes in route, mode, 

departure times, and cancellations, but there is no way of knowing whether online 

access has replaced travel. Many such records track a partial journey, rather than from 

home origin to final destination, and are therefore incomplete. Also, data sources such 

as electronic ticketing or traffic count loops are only relevant to a subset of transport 

modes, reducing how many behaviour changes might be measured without access to 

multiple datasets, usually with a variety of data owners and permissions to link them. 

Even cameras and sensors which do offer multi-modal output are unlikely to be 

comprehensive on local roads in urban areas, and pedestrians and other ‘slow’ modes 

are often overlooked or undercounted. Alternatively, there is the data produced by and 
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for Information and Communication Technologies (ICT), including both mobile and 

fixed services, as form the inputs to Chapters 6 and 7 respectively.  

ICT-derived data have the potential to capture large samples of space-time paths 

with minimal cost, and offer insights into the variability and short-term shifts and 

patterns of movement and user needs that cannot be captured by surveys (Arribas-

Bel, 2014; Lovelace et al., 2016; Miller, 2005). Mobile phones and other connected 

devices and infrastructure are producing ever greater volumes of time-stamped data, 

via basic services, financial transactions, social media and apps; and spatial data 

through the provision of GPS-location-based services where voluntary geographic 

tagging is switched on for journey alerts, gaming, advertising, and social networking 

(Arribas-Bel, 2014; Blazquez and Viegas, 2018). These ICT sources are well-placed 

to uncover patterns of regular, but less frequent activity, such as secondary places of 

work, irregular trips for tourism or business travel, and atypical days when there are 

planned or unplanned events, including severe weather (Becker et al., 2013; 

Calabrese et al., 2010; Steenbruggen et al., 2015; Wang et al., 2017). They also have 

great potential to reveal how people access land uses other than employment, such 

as supermarkets and cafes or restaurants in both space and time (Järv et al., 2018; 

Wang et al., 2018). And whilst those using location-based services and mobile 

applications are still relatively small in number, the market share is increasing and key 

socio-economic characteristics can be linked to sample populations through their 

geography. 

However, there are caveats. ICT infrastructure, operation, and use is as full of 

overlapping and uneven networks as are transport systems, with levels of accessibility 

and capacity dependent upon the end users’ own capabilities, their placement in time 
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and space, the Internet Service Provider involved, the type of connection, and the 

technology used to manage the connection (Blank et al., 2018; Graham, 2013; 

Nardotto et al., 2015; Philip et al., 2017; Tranos et al., 2013). Some of these data 

sources are much less granular than others, both spatially and temporally, and some 

have different spatial and temporal profiles than the transport movements they are 

being used to measure. For example, the basis for analysis in Chapter 7 is that the 

quality, or in other words, the download speeds of fixed broadband services are 

affected by increased online activity and data flows during severe weather events, 

although such speeds and flows are commonly tracked by time of day to estimate peak 

download demand after peak travel hours have ended (Fu et al., 2016; Nardotto et al., 

2015; Riddlesden and Singleton, 2014; Stubbings and Rowe, 2019).  

Furthermore, a mobile phone may not be in use or cell towers may be too far apart 

to capture shorter trips or short stops in a trip chain (Caceres et al., 2007). Aspects like 

mode, vehicle type, and occupancy can be inferred from mobile data, as road and rail 

trips are in Chapter 6, but these are not surveyed directly. The population that uses 

ICT the most tends to be younger, more urban, and better educated (Blank et al., 2018; 

Kwan, 2001), yet such socio-demographic characteristics are rarely included within 

ICT datasets due to concerns about privacy and data protection. Addressing privacy 

concerns in ICT datasets is an ongoing challenge, as there are contrasting regulatory 

and market-led approaches (Cottrill and Derrible, 2015). Studies have also recorded 

less mobile phone use and fewer social interactions in the morning peak (Aledavood 

et al., 2015; Louail et al., 2014), but this may not be the case during a severe weather 

event if people are using their ICT devices to track disruption (Lee et al., 2009). Thus, 

severe weather adds further layers of temporal and spatial variation in internet activity 
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across ICT networks that has yet to be fully researched in parallel with transport 

accessibility, and adds uncertainties to the analyses in Chapters 6 and 7. 

Table 4.1: Data Sources for each empirical chapter 

Chapter 5 Chapter 6 Chapter 7 Chapter 8 

Bus network 
electronic ticketing 
data 

Mobile phone 
network data pre-
processed into 
origin-destination 
matrices 

Broadband speed 
tests (voluntary 
geographic 
information) 

National Travel 
Survey 2009 – 
2016 (England) 

Local news reports 
and twitter feeds 

2011 census 
tables / output 
areas 

2016 population 
estimates (density) 

OpenStreetMap 
points of interest 

Media reports 

2011 census 
tables / output 
areas 

Met Office 
archived weather 
records 

2014 small area 
income estimates 

 

Although not all uncertainties can be removed from analyses such as those in 

Chapters 5 through 8, some are minimised through matching additional data sources, 

methodological choices, and sensitivity testing. The next section will discuss the 

methodologies used and how the strength of certain insights can be reinforced for 

subsets of the data. Table 4.1 lists the data sources used for each empirical chapter, 

including both the main data source and supporting data on geographic and 

demographic characteristics as well as information on weather events and impacts. It 

should be noted that the choice and use of secondary data sources was also 

dependent upon whether data were freely offered or otherwise made available in 

constrained formats. Transport and ICT big data is often proprietary, costly, and 

subject to stringent personal or commercial privacy regulations. However, the 

proprietary data could be linked to geographic and demographic data, which, at least 
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at the neighbourhood scale, are generally open or crowd-sourced through voluntary 

agreement and thus available on APIs.  

4.2 Identifying Appropriate and Mutually Reinforcing Methodologies 

Severe weather events are irregular and extreme phenomena, ‘cases’ by nature, 

and the response to them is highly context-dependent, spatially and temporally, which 

is a key characteristic of case study research (Flyvbjerg, 2006). Investigating these 

atypical events also has greater potential to reveal whether trends in ICT diffusion and 

increasing flexibility of work and travel affect the resilience and access patterns of 

commuters, who respond little to mere daily weather variation. Furthermore, multiple 

case studies enable the emergence, rather than the deduction, of insights into 

opportunities for resilience, which is fitting for research that must find patterns in 

available data generated during particular weather events, rather than by experimental 

design (Eisenhardt and Graebner, 2007). Thus, the combination of secondary data 

sources with a methodological approach that builds on case study research is well 

suited to the research aims and objectives of this thesis.   

Unusually for case study research, the central data sources for the empirical 

chapters all comprise thousands to millions of observations. Researchers are 

developing new methods of modelling the bigger data sources using machine learning 

techniques to infer greater insights into temporal variability, journey times, and even 

individual behaviour (Crawford et al., 2017; Haworth et al., 2014). The opportunities to 

use big data to build more concrete methodological foundations for the concept of time 

geography are also being identified (Arribas-Bel and Tranos, 2018; Miller, 2005; van 

Wee et al., 2013; Wang et al., 2018). However, big data sources, including those 

analysed in Chapters 5-7, often have challenges in terms of usability of format, missing 
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data, or sampling / response biases, and each varies in scale and aggregation. 

Therefore, in each empirical chapter, it was essential to explore the data in tabular 

form, graphs, and maps, and interrogate the summary statistics. These in themselves 

can offer insights into travel patterns, and indeed, for a case study as spatially, 

temporally, and modally bounded as the one in Chapter 5, maps and graphs alone 

revealed an important change in travel behaviour, the context for which could be found 

in local news reports and Twitter feeds. 

Graphs are also a common way to review and assess trends in data sources like 

the National Travel Survey (Chatterjee et al., 2018; Headicar and Stokes, 2016; Le 

Vine et al., 2017). Therefore, a proportion of the analysis in Chapter 8 focuses on 

graphs and summary statistics. However, the aim of using the National Travel Survey, 

where trip diaries are unlikely to have been recorded during extreme weather events 

was to consider the travel budget of telecommuters, not by distance or duration 

(Mokhtarian and Chen, 2004), but by journey purpose. Where journey purpose is the 

dependent, non-ordinal, categorical variable, similar to studies with modal choice as 

the dependent variable, multinomial logit modelling offers an appropriate methodology 

(Saneinejad et al., 2012; Zhou, 2012). Understanding the journey purpose of 

telecommuters provides insights into the types of non-work journeys which might be 

postponed or cancelled when commute journeys are prioritised during severe weather 

as is explored in Chapter 6.  

Commuting patterns in Chapter 6 were derived from mobile phone network data 

pre-processed to mimic inputs into traditional transport modelling, and thus in the form 

of origin-destination matrices. This pre-processing is in line with a wider area of 

research supported by industry and governments to build transport models with mobile 
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phone data inputs, as such data are larger and often less expensive than road side 

interviews and other survey techniques used to gather the same information (Caceres 

et al., 2007; Cuauhtemoc et al, 2017; Duduta et al., 2016; Tolouei et al., 2015; Vilarino 

et al., 2016; Wang et al., 2017). Furthermore, data analysts have built robust models 

that confirm that individual mobility follows certain patterns and is largely predictable, 

and have written algorithms that rank important places in people’s lives, particularly 

work and home, to a high level of confidence as validated against national surveys and 

revealed travel (Gonzalez et al., 2008; Isaacman et al., 2011; Noulas et al., 2012; Song 

et al., 2010). Therefore, this confidence could be transferred to the assignment of trips 

as home-based work, home-based other, and non-home-based in the matrices built 

from mobile phone network data prior to their release for this research.  

Yet although the data was designed to fit into a traditional transport model, the 

application of such a methodology had more limited value for comparing the difference 

in, rather than the total, trip generation for different land uses under storm conditions. 

Furthermore, transport models are a form of spatial interaction or ‘gravity’ models, a 

key element of which is a ‘distance decay factor’ or the ratio of cost to benefit, distance 

to attraction, even though these are based not on the laws of physics, but the vagaries 

of human behaviour (Halás et al., 2014). As various studies have noted, the perception 

of proximity alters according to route, mode, activity, environment, physical barriers, 

historic connections, and the diversity or homogeneity of neighbourhoods (Halás et al., 

2014; Martinez and Viegas, 2013; Reggiani et al., 2011). It also varies with the weather, 

but within the context that certain major decisions, such as employment or residential 

location, will have been made based upon the economic and social opportunities and 

accessibility criteria at the time of decision (Noulas, et al., 2012), and are thus unlikely 



48 
 

to account for how the journey may be affected during a period of disruption. 

Furthermore, in the case of differences in trip generation, using a gravity-style model 

and including distance decay masked other influences of primary interest to this 

research, such as socio-economic status and urban form, as well as resulting in a poor 

model fit. Therefore, linear regression rather than spatial modelling was used in 

Chapter 6.  

The analysis in Chapter 7 is more complex and uses multi-level regression 

modelling, where intercepts were allowed to vary by a neighbourhood level statistical 

output area even though the speed tests themselves were geo-located. The reason for 

this is that ICT is not only a useful data source to track dynamic accessibility, but can 

also change it (Cats and Jenelius, 2014). As discussed in the last section, the quality 

of fixed broadband available is affected by both location-based supply options, such 

as the level of competition between Internet Service Providers and the types of 

connections they can provide, as well as the demographics of an area, which 

determine levels of demand independent of any adverse weather risks. Thus, 

controlling for the spatially fixed influences on broadband speeds within a spatial 

hierarchy enabled the model to better estimate the correlations between coefficients 

and temporal variation. The control variables were applied at the neighbourhood level 

because applying a random effect to these geographic units improved the model fit 

more than if larger areas were used, whilst more data was available at this level than 

if smaller areas were used. 

Finally, to accommodate both key influences as defined in the literature and varying 

strengths of effects and significance of the coefficients within the model for socio-

economic or geographic characteristics, the multinomial logit and multi-level models in 
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Chapters 7 and 8 were subject to sensitivity testing. The sensitivity tests were 

estimated for different subsets of the data included in the main model, and compared 

to other results from both the statistical modelling and the maps, graphs, and summary 

statistics of the data. By these means, the methodologies utilised in this thesis could 

either eliminate or further reinforce any insights into the changes in travel and online 

accessibility during severe weather and the key characteristics that most influenced 

those changes. 

In summary, the empirical analyses in the next four chapters utilise a number of 

different secondary data sources, from electronic ticketing transactions to national 

travel survey responses, as well as ICT-derived big data. The quantitative 

methodologies employed complement the variables of interest and context is provided 

by matching the main data sources to information on weather parameters, weather 

impacts, and socio-economic statistics. This inductive and context-dependent 

approach is part of a case study based methodology, which fits the aims and objectives 

of the research to understand the response of commuters and other travellers to 

irregular and extreme phenomena such as severe weather events. 
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5. BUS AS THE RESILIENT TRAVEL CHOICE: A CASE STUDY FROM 
READING, UK3 

This chapter describes an empirical case study which, as discussed in section 3.1, 

demonstrates one of the most basic ways in which ICT has made more resilient travel 

behaviours possible. ICT increases the awareness of alternatives if realistically 

available, provides the information required to successfully choose those alternatives, 

and enables prospective travellers to more rationally calculate the comparative cost, 

time, and reliability of the alternatives, in this case, between different modes of public 

transport during a major storm event. Weather events are a well-known risk to the 

reliability of journey times, particularly if infrastructure already operating close to design 

capacity is affected during busy periods such as morning and evening peaks (Koetse 

and Rietveld, 2009). Storm Doris struck on a Thursday, outside a holiday period, 

affecting congested urban areas at one or both peak periods. The case study in this 

chapter identifies the choice travellers and particularly commuters made to switch from 

delayed or cancelled train services to more reliable, if occasionally diverted bus 

services. Separate operating companies are responsible for the routes, timetables, 

fares and ticketing, and thus it is likely that ICT such as third party journey planners, 

as well as the communication channels of the operators helped customers be confident 

in making the switch. The analysis also provides some evidence of the importance of 

commuting trips over other journeys, as the co-location of a major employment site, 

small train station, and bus-based Park and Ride, generated a strong counter-flow 

trend in bus travel under storm conditions, taking advantage of spare capacity. 

                                                           
3 The majority of this chapter has been published as Budnitz, H., Chapman, L., Tranos, E. (2018) ‘Better by bus? 

Insights into public transport travel behaviour during Storm Doris in Reading, UK’, Weather, 73(2), p54-60. 
https://doi.org/10.1002/wea.3058. 

https://doi.org/10.1002/wea.3058
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5.1 Storm Doris and the Public Transport Options in Reading, UK 

On 23 February 2017 Storm Doris hit the British Isles with rain, snow and high winds. 

The strong winds felled trees and displaced signs, roof materials and other objects, 

which in turn severed power lines, blocked transport networks and caused substantial 

disruption. Alongside the physical damage, the cost of this event includes the extent 

to which it may have reduced economic productivity or impacted personal welfare, 

which is in turn determined by individual response to first the risk, and then the reality 

of the disruption. Although Reading was only issued amber warnings (Met Office, 

2017a), and gusts reached no more than ~60mph, transport infrastructure and services 

were significantly affected by Storm Doris. This chapter explores how ticketing data 

from Reading Buses offer insights into the reactions of bus and, indirectly, rail 

passengers. 

The UK Met Office coordinates with other agencies, including emergency 

responders, to issue severe weather warnings based upon expected impacts, such as 

travel disruption or flooding, rather than absolute levels of precipitation or wind speed 

(from correspondence with a Met Office weather desk advisor on 25 November 2016, 

pers. comm.). On 21 February 2017, the Met Office issued yellow and amber warnings 

relating to an approaching storm, which by the 22nd covered almost all of the country 

(Met Office, 2017b). It became Storm Doris, as the practice of naming storms with at 

least amber warnings, particularly if they were forecast to have strong winds and wind 

impacts, had been successfully piloted during the previous winter season in order to 

improve communication to the public (Eysenck, 2016; Met Office, 2016a). After Storm 

Doris passed, the national news reported that the damage caused by winds of up to 

94mph had indeed been severe, including one death from fallen debris, power outages 
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from East Anglia to Northern Ireland, cancelled flights and ferries, and closed train lines 

and bridges (BBC, 2017). 

In Reading, the strong winds brought by Storm Doris also caused damage and 

disruption, particularly to the rail network. Over the course of the day, the online local 

news, getreading, reported trees or other obstructions blocking trains to London 

Paddington, Didcot, Bedwyn and Wokingham / Guildford, whilst all South West Trains, 

including those between Reading and London Waterloo, ran under speed restrictions 

that delayed journeys from late morning through most of the afternoon (Fort and 

Perryman, 2017). Of about 30 updates on their website over the course of the day, all 

but three were about rail disruption (Fort and Perryman, 2017). A Twitter search shortly 

after the event on the public transport operators’ accounts and using key words such 

as ‘#stormdoris Reading’ showed a similar ratio (Twitter, 2017). So many trees fell 

across the tracks on the line between Reading and Guildford that Great Western 

Railways reported the following on its social media page: An earlier large tree blocking 

the line has been cleared away… but response teams have now found several other 

fallen trees in the area (Great Western Railway, 2017). 

Climate change risk assessments acknowledge that the UK’s rail network is highly 

susceptible to strong winds, due to the presence of 2.5 million trees alongside the 

tracks (Dawson et al., 2016). For example, high winds during the winter 2013/2014 

storms caused bridge closures on the country’s Strategic Road Network, but operation 

returned to normal soon afterwards; conversely, the resources available for clearing 

trees blocking various rail lines were deemed insufficient, delaying recovery (Brown et 

al., 2014). In Reading, rail capacity was more disrupted than other transport modes by 

the high winds experienced during Storm Doris, with predictably more severe 
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consequences considering trains are disproportionately important to the Reading 

conurbation. The population of Reading Borough was 155,700 in the 2011 census 

(Office for National Statistics, 2013), and even the wider urban area can count no more 

than double that number, yet Reading Station handled 20.7 million passengers 

entering, exiting or changing trains in 2015 / 2016 (Office of Rail and Road, 2016). This 

puts it in the top five busiest stations in England outside of London, and seventh overall 

for interchanges, with almost 4 million passengers logged changing between services 

(Office of Rail and Road, 2016). Figure 5.1 shows the rail network in Reading. Great 

Western Railway operate most trains serving Reading Station. South West Trains, 

Cross Country and many freight trains also use the facilities. 

 
Figure 5.1: Rail network around Reading, UK4 

During Storm Doris, many trains were delayed or cancelled, but that may not mean 

their passengers’ journeys were too. Panel surveys of travellers affected by three 

major, recent weather and roadworks events indicate that commuters most often start 

                                                           
4 © OpenStreetMap contributors; see http://www.openstreetmap.org/copyright 

http://www.openstreetmap.org/copyright


54 
 

journeys slightly later in response to disruption, although over time compressing the 

work week and increasing the frequency of telecommuting become common coping 

responses (Marsden et al., 2016). Online interactions between individuals and the train 

operators confirmed that a few passengers re-routed along other train lines during 

Storm Doris (Twitter, 2017), but other reactions were not announced on social media. 

The Met Office claims that its severe weather warnings encourage more people to stay 

at home (Met Office, 2013). Other studies demonstrate that even normal weather 

variations cause some travellers to change mode, route or departure time, that is, by 

leaving early or postponing (Khattak and De Palma, 1997; De Palma and Rochat, 

1999; Kilpelainen and Summala, 2007; Sabir et al., 2010; Cools and Creemers, 2013). 

If travellers in the Reading urban areas postponed on 23 February 2017, then their 

outbound journey may have been disrupted, but if they left early, they may have been 

stranded for hours trying to make an early return – unless they improvised by changing 

route or mode. The evidence from Reading Buses supports the latter hypothesis: some 

travellers adjusted their travel behaviour to the changing circumstances. 

Reading Buses is a municipal bus company which operates over 95% of services in 

Reading Borough and the majority of services in neighbouring boroughs (Ottewell and 

Hyde, 2016). The dataset from their electronic bus ticketing system is thus a nearly 

complete record of bus patronage in the area for the period of analysis. Buses also 

hold a greater and growing share of the transport market in Reading compared with 

most other urban areas in the UK, with 20.4 million trips in 2015/16, the third highest 

rate of bus use per capita in England outside of London (Ottewell and Hyde, 2016). 

About 50% of trips are estimated to be made by commuters (T. Pettitt, pers. comm., 

2017). For this research, Reading Buses provided summary data from their ticketing 
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system of 303,000+ trips taken on Thursday 23 February 2017, during Storm Doris, 

and Thursday 2 March 2017, an ‘average’ day (Reading Buses, 2017a). 

 
Figure 5.2: Map of Reading bus routes5, with triangles added to indicate increase 
(pointing up) or decrease (pointing down) of passenger numbers. The triangles are 
scaled to match the percentage changes in daily passenger numbers on each colour-
coded cluster of services during Storm Doris compared with an ‘average’ Thursday.  

As is clear from Figure 5.2, the most obvious result from the summary data is that 

bus passenger trips were 4–8% lower on most services on 23 February than on an 

‘average’ Thursday, except for the orange Woodley services, down by 1.5%, and the 

southeast Park and Ride route and inter-town services, which saw increases. 

Lower patronage is expected, as studies of ticketing data in various cities over 

periods of up to 2 years conclude that ridership usually decreases in ‘bad’ weather and 

increases in ‘good’ weather; even with small percentage changes, many tests have 

had statistically significant results (Guo et al., 2007; Kalkstein et al., 2009; Stover and 

                                                           
5 Base map source: Reading Buses, 2017b 
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McCormack, 2012; Singhal et al., 2014). Public transport passengers are thought to 

respond to a range of direct and indirect weather impacts (Guo et al., 2007; Adler and 

van Ommeren, 2016). People may decide not to travel by bus on rainy days because 

they would get wet walking to the bus stop, because their stop lacks a bus shelter, or 

because the bus is likely to be delayed by typically slower speeds on the road network 

(Guo et al., 2007; Stover and McCormack, 2012). They may also choose to postpone 

or cancel a weather-affected activity, and thus the trip to access the activity does not 

occur (Sabir et al., 2008). 

Postponement or cancellation is most common for discretionary journeys, whilst far 

fewer people cancel their commuting or business journeys (Sabir et al., 2010). This 

conclusion appears to apply to the reduction in journeys around Reading. A majority 

of those using concessionary bus passes as tickets are not in work or education, as 

these passes are part of the national scheme only available to those of pensionable 

age travelling after 0930h or those with certain recognised disabilities. Therefore, 

excluding trips taken using concessionary bus passes, the percentage change in 

passenger numbers on the pink routes in Caversham falls to less than 1%, and in 

Woodley rises to 3% more passengers on 23 February. Other major service clusters 

still show decreases of 2–6%. Reviewing when fewer trips occurred provides further 

evidence of how few commuters cancelled trips. The graphs in Figure 5.3 show when 

and on which bus the almost 28,000 trips were taken on the eastern half of the cross-

town, flagship Route 17 on the two successive Thursdays (Reading Buses, 2017a). 
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Figure 5.3: Route 17 passenger numbers for (a) inbound and (b) outbound journeys. 

Whilst Route 17 saw 6.5% fewer trips during the day Storm Doris hit the UK, and 

4.1% fewer trips excluding concessionary bus pass holders, that drop in passengers 

was spread throughout the day, inbound and outbound. Research suggests that 

mobility and activities are most consistent, no matter the weather, between 0800 and 
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0900h on weekdays: the morning rush hour (Horanont et al., 2013). In the dataset for 

Route 17 in Figure 5.3, there were actually 155 more passengers travelling on 23 

February during this hour than on the following Thursday. If passengers during the 

entire peak period (0600–1000h) are included, there were 196 more AM peak trips on 

2 March. Considering that the most common response to bad weather is for commuters 

to change the start time of a journey (Khattak and De Palma, 1997; De Palma and 

Rochat, 1999; Kilpelainen and Summala, 2007; Cools and Creemers, 2013; Marsden 

et al., 2016), the data suggest that a small number of commuters probably stayed at 

home on 23 February, but most travelled, some slightly later during the morning peak. 

Overall, therefore, this case study is consistent with the results of previous research: 

in severe as in merely ‘bad’ weather, most commuters will continue travelling. 

Another question is whether those who do not travel, commuters or otherwise, are 

responding to weather parameters like rainfall and wind speeds, the focus of most 

previous research, or to weather impacts on network performance (e.g. bus routing, 

timetable adherence). From the company’s operational summaries and its Twitter feed, 

it is known that falling trees and debris did affect a number of Reading Buses’ services 

during the day of storm, causing delays and diversions. Yet the operator attributed far 

more lost mileage to ongoing roadworks than it did to the weather. For example, the 

Route 17 bus was diverted for almost two hours because a fallen billboard closed the 

road on which it normally runs along a bus lane, yet the redundancy built in to bus 

service delivery meant minimal lost mileage (Reading Buses, 2017a). Also, the 

difference in outbound passenger numbers during that period was negligible, and 

inbound passenger numbers dropped by only about 100, a small loss on such a 
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popular service. Therefore, bus passengers appear to respond more to severe weather 

warnings and associated risks than to the resulting impacts as they occur. 

5.2 Inferring the switch from rail to bus 

It is less certain that rail passengers, who are dependent upon much less resilient 

services, respond likewise. Figure 5.2 reveals a clear aberration to the expected 

decrease in bus passengers. Routes serving the adjacent towns of Wokingham, 

Bracknell and intermediate areas with small railway stations recorded substantially 

more trips. These routes only carry about 7,000 passenger trips combined on an 

‘average’ Thursday, but between them, they carried over 550 more passengers on the 

day of Storm Doris (Reading Buses, 2017a). It is not only a significant change but 

merits further investigation of the differences in trip patterns. 

The service carrying the most inter-town passengers is the X4. On 23 February, 

during Storm Doris, these buses served 14.5%, or about 325 more trips than on 2 

March, as shown in Figure 5.4. Unlike on Route 17, the difference in the number of 

trips does not appear to have been distributed randomly throughout the day or by 

direction. Most of the additional passengers were on two mid to late afternoon services, 

just before the typical evening peak hour, and 73% of the additional trips were inbound. 
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Figure 5.4: Route X4 passenger numbers for (a) inbound and (b) outbound journeys. 

Although the reason for these extra trips cannot be confirmed from the data 

available, the parallel train lines suffered from severe disruption. Rail services between 

Reading and Guildford via Wokingham were delayed or cancelled on and off for about 

two hours in the morning, starting at the tail end of the rush hour, and then throughout 
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most of the afternoon (Fort and Perryman, 2017; Great Western Railway, 2017). A 

limited bus replacement service was only offered at around 1600h (Fort and Perryman, 

2017), and the train operator’s Twitter feed estimated that the line would not be open 

until 1730h at the earliest and that tickets would be accepted on other operators’ routes 

(Great Western Railway, 2017). According to getreading, the line reopened at 

1717h,although delays continued for some time afterwards (Fort and Perryman, 2017). 

It is not unreasonable to speculate that some of the additional bus passengers were 

commuters and students who took trains in the morning, kept an eye on events and 

the uncertain extent of rail disruption, and improvised accordingly. Students often travel 

at that time, but commuters, too, were likely among the extra passengers, as their 

presence would better explain why so many trips were inbound. There are employment 

sites all along this corridor, but the majority of selective and specialist schools are in 

Reading, so more students would travel outbound in the afternoon. Furthermore, with 

bus and rail interchanges centralised in Reading, more employees working along the 

southeast corridor would need to travel inbound to access multiple residential 

neighbourhoods, whilst employees in central Reading would only travel outbound if 

they live in that direction. 

The dataset for Route 500 also revealed a significantly different pattern on 23 

February compared with 2 March. Route 500 is the express service into Reading from 

a Park and Ride site immediately adjacent to Winnersh Triangle railway station. 

Passengers may walk to the Park and Ride and ride Route 500 like any bus, or they 

may park their car at the Park and Ride site, or they may be dropped off and picked 

up. Parking and then riding offers less flexibility than the other choices, as passengers 

are expected to return to their car at the end of the day. Taking an alternative mode 
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home, such as other public transport, would involve abandoning their personal vehicle. 

Being driven in somebody else’s car to and from the Park and Ride offers the most 

flexibility, as the passenger could be dropped off and picked up at different places. 

As shown in Figure 5.5, Reading’s Winnersh Triangle Park and Ride carried 22% or 

almost 200 fewer passengers on 2 March than on 23 February. In contrast to the X4, 

81% of those additional passengers were on outbound services.  

 

 
Figure 5.5: Route 500 passenger numbers for (a) inbound and (b) outbound journeys 
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Park and Ride sites are purposefully built to encourage daily commuters to use 

remote parking facilities and an express bus service as an alternative to parking in the 

centre of an urban area. Thus, they are designed for a high proportion of inbound trips 

in the morning and outbound in trips the evening. This was the pattern on 2 March, a 

‘typical’ day. On 23 February, many more passengers were using the Park and Ride 

outbound in the morning. As it is unlikely they had left their cars the day before, their 

trips must have been made to access the business park and surrounding area where 

the Park and Ride facilities are located. Yet there are not enough inbound passengers 

recorded on Route 500 for those people to have returned home by that means in the 

afternoon. 

The train delays at the end of the morning peak were between Reading and 

Wokingham, thus affecting both the South West trains that stop at Winnersh Triangle 

on their way to London Waterloo, and trains towards Guildford. In contrast, the speed 

restrictions on South West trains were lifted by mid-afternoon, even if those trains did 

still suffer delays, whilst the trains on the Reading–Guildford line weren’t running at all 

until a couple of hours later. Thus commuters who arrived at work at the tail end of the 

rush hour and left later in the evening could have been on the 500 bus in the morning 

and taken the train home in the evening. Others may have found the timetables of the 

heavily laden X4 buses more convenient in the afternoon. 

In conclusion, the X4 and 500 bus routes attracted significantly more passengers 

on the day of Storm Doris. These services also lost concessionary trips during the 

storm, but non-concessionary trips more than made up for the loss. Thus, the evidence 

supports the hypothesis that those making non-discretionary journeys (i.e. commuters 

and students) were not cancelling their trips, but rather were seeking alternative, more 
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resilient modes of travel. In this case study, the bus offered more resilience when faced 

with severely disrupted train services. The datasets from the slower, less direct Routes 

4 and 10 also bolster this argument. Both carried more passengers on 23 February, 

although this applies to Route 4 only if concessionary trips are excluded. Route 10, 

which serves a number of smaller settlements, carried more passengers using all ticket 

types. 

The above analysis demonstrates that the travel patterns of bus passengers in 

Reading changed significantly as a result of the storm. The overall reduction in 

passenger numbers on most services provides further evidence that public transport 

ridership tends to decrease in adverse weather conditions, despite previous studies 

often excluding the most severe weather events (Hofmann and O’Mahony, 2005; Guo 

et al., 2007; Kalkstein et al., 2009; Stover and McCormack, 2012; Singhal et al., 2014). 

It may be the case that bus passengers drive in bad weather, but it seems more likely 

that many discretionary journeys, particularly as measured by concessionary trips, are 

cancelled. Furthermore, as the Route 17 dataset demonstrated, the fall in trips is 

spread throughout the day, rather than tied to specific storm-related impacts on 

performance. This suggests that the Met Office weather warnings and publicity, 

including storm naming, is effective in encouraging people not to take risks and travel 

in severe weather (Met Office, 2013).  

In contrast to public transport trips made for leisure or other more time-flexible 

purposes, commuters cancel fewer trips due to weather warnings, so their time at work 

and productivity may well be affected by disruption. Surveys suggest that if possible 

and acceptable to their employers, telecommuting increases during prolonged periods 

of travel disruption (Kaufman et al., 2012; Marsden et al., 2016), yet there is no such 
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evidence for a single-day event. The empirical analysis above suggests that evasive 

action, such as travelling later or switching between rail and bus, may reduce the costs 

of delay, but without complete, clean and accessible datasets reflecting all modes of 

transport in an urban area, the exact shift between different modes of transport or 

proportion of cancelled trips cannot be determined. Nevertheless, Reading Buses’ 

ticketing data does reveal patterns of travel behaviour change in response to Storm 

Doris. As the risk and impact is unequal for bus and rail services operating on parallel 

routes, the data suggest that passengers are willing to switch their mode of transport, 

as well as exhibiting flexibility and opportunism in the services they used, depending 

on the direction and time of travel. This case study thus provides insights into the 

complex relationship between non-discretionary travel behaviour and weather, and 

what this means for costing resilience and recovery planning. 
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6. ONGOING STORMY WEATHER AND ITS IMPACT ON ACTIVITY 
PARTICIPATION6 

As highlighted in the previous chapter, it is difficult to measure quantitatively all types 

of travel behaviour response: changes in route, time of travel, mode, duration, 

destination, and prioritising some purposes whilst postponing others, as well as 

cancellation or online access; without datasets covering all modes, and information on 

internet activity as well. Acquiring datasets covering bus and rail passenger counts and 

local traffic volumes during storms is challenging in itself, but automated, 

comprehensive data that includes details of private vehicle occupancy, and numbers 

of pedestrians and cyclists is unlikely to exist in most urban areas, and online access 

rates are also absent. Furthermore, these transport big data sources provide little 

information on socio-demographics or journey purposes, other than ticket types such 

as the concessionary bus passes mentioned in Chapter 5, and do not provide an 

accurate account of the journeys’ origin and destination end points, as the record 

begins at bus boarding and no further transaction occurs on alighting. As reviewed in 

section 2.1, some studies have used survey-based methodologies to identify how 

individuals avoid transport disruption and still engage in activities such as work during 

severe weather and other unplanned events, depending upon the location and timing 

of the impacts; and a few include questions about online access, journey purpose, and 

socio-demographics (Kaufman et al., 2012; Marsden et al., 2013; Marsden et al., 

2016). Such studies provide useful insights into individual perceptions and choices, 

and are indicative of the capacity for resilience. However, they lack the spatial breadth 

                                                           
6 The majority of this chapter has been accepted as: Budnitz, H., Tranos, E., Chapman, L. ‘Responding to stormy 

weather: Choosing which journeys to make’, Special Issue on “Changing Travel Behaviour in the Connected 
Era”, Travel Behaviour and Society. 
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and granularity to offer insights into the production / attraction of trips, match responses 

to geographically specific transport disruption, such as that caused by flash flooding, 

and extrapolate socio-economic trends. Mobile phone Network Data (MND), in 

comparison, enables quantitative analysis of the extent of changes in accessibility to 

work and other purposes, and the influence of neighbourhood geography and socio-

economic obligations on these patterns.  

MND is, along with other big data sources discussed in section 4.1, particularly 

useful when disruptions are sudden and unplanned in nature, as the response to such 

events can only be analysed in retrospect from a data source that captures mobility or 

accessibility patterns on a continuous, uninterrupted basis. The type of weather event 

considered in this chapter was chosen in part for its suddenness and the likely reactive 

aspect of any response. The recurring convective storms that form the case study here, 

like the one-day wind impacts of Storm Doris, are more difficult for travellers to respond 

to resiliently than long-term flooding, when adjustments can be made over time, or 

during weather events like snow, which have impacts that are better understood and 

carry less uncertainty. In contrast, the level of risk and disruption from impacts like wind 

and flash-flooding will depend upon who lives, works, visits or travels through 

geographically distinct areas during the weather event. The severity of the impacts is 

related to existing patterns of human behaviour and the time and location at which the 

event and disruption occurs (Beiler et al., 2012; Dawson et al., 2016). In other words, 

a flash flood on a country lane will not have the same impact as a similar event on a 

major urban arterial road. A tree falling across a railway line in the middle of the night 

does not have the same consequences as one that has blocked the line during the 

commuter peak period. The severe weather events and any disruption they cause 
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which occur at times when many people need to travel to or from work have a greater 

impact on accessibility, particularly for those commuters, than events at other times.  

The most common response by commuters to bad weather is changing the 

departure time, either by postponing travel or leaving early to allow more time (Böcker 

et al., 2013; Cools and Creemers, 2013; De Palma and Rochat, 1999; Khattak and De 

Palma, 1997; Sabir et al., 2010). Yet these options are not available to commuters 

already at work who need to return home, and who may also already be locked into a 

mode of travel and do not have a telecommuting option. Commuting choices will 

influence other travel choices, and consequently the likely production or attraction of 

trips to / from different areas of origin / destination, and thus the accessibility of those 

areas or for those communities. Therefore, this chapter uses MND to analyse these 

patterns for a case study of two working weeks during which multiple convective storms 

caused pluvial flooding over a wide area and large sample population. The aim is to 

determine the impact of the storms on dynamic accessibility throughout the West 

Midlands metropolitan sub-region over a two-week period of disruption in June 2016. 

The storms occurred with little warning and mainly in the afternoon, when the majority 

of commuters would have made their initial choices of mode and destination. Thus, 

any behavioural response was inherently reactive, better highlighting the relevance of 

socio-economic and geographic characteristics to the changes in travel patterns and 

access to work and other activities. 

6.1 Applying Mobile phone Network Data to a Severe Weather Case Study 

MND is identified in the literature as a useful source for detecting patterns of travel 

between important origins and destinations such as home and work that can be 

validated against static data such as the Census to determine the influence of socio-
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economic or geographic characteristics, and, as it is collected continuously by mobile 

phone operators from their customers, to enable identification of divergences from 

normal patterns (Becker et al., 2013; Isaacman et al., 2011; Steenbruggen et al., 2015). 

The main data used in this chapter were prepared by Telefonica, a mobile phone 

operator with approximately 30% of the UK market share, including in the study area, 

using MND comprising of Call Detail Records (CDRs) from their private customers and 

certain minimal ‘passive’ network events generated by those customers, such as 

movements between clusters of cell towers (Duduta et al., 2016; Engelmann et al., 

2018). CDRs include the coarse location of mobile phones whenever they are turned 

on / regain connection with the network; are in use for calls, texts, or the receipt of 

data; or switch between 2G / 3G / 4G bandwidths, resulting in large sample sizes with 

a low sampling bias (Becker et al., 2013; Engelmann et al., 2018; Tolouei et al., 2015; 

Wang et al., 2017). After working on smaller, urban area projects in the UK using 2014 

data to apply MND to building traffic models and evaluating and validating it against 

both national and local survey data (Tolouei et al., 2015; Vilarino et al, 2016), 

Telefonica developed a much larger dataset of origin-destination trip matrices covering 

England, Scotland, and Wales for the whole of 2016. It was made available for 

academic research via the non-profit Transport Systems Catapult, an organisation set 

up by the UK government to foster innovation and industrial-academic collaboration.  

Within the available dataset, a period of thunderstorms and flash flooding in June 

2016 centred on Birmingham, UK offered an opportunity to assess the influence of 

geographic and socio-economic characteristics on travel choices, particularly which 

journeys are prioritised in these reactive circumstances. There are various spatial units 

covering the Birmingham metropolitan area, including the West Midlands Government 
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Office Region (GOR) and the West Midlands metropolitan county. This chapter uses a 

buffering technique to define the study area, as described below, which selected a 

spatial unit between the GOR and the metropolitan county in area. Socio-economically, 

the West Midlands metropolitan county performs worse economically than the national 

average for Great Britain, with 6.4% of the working-age population between 16 and 64 

unemployed, 27% economically inactive for various reasons, and almost 13% having 

no qualifications; also, commuters are likely to have less spatial and temporal flexibility 

than in other regions, with a greater proportion of employees compared to those who 

are self-employed and a slightly higher percentage of employees working full time 

(ONS, 2019). However, mobile phone ownership in the West Midlands GOR is similar 

to the rest of the country, with about 95% of adults in Great Britain owning and using 

at least one mobile phone, although 10% of those over 64 and 31% of those over 75 

do not (ONS, 2015).  

The level of spatial and temporal granularity of MND varies depending upon the 

location and density of cell towers and the frequency of use of the device.  This can 

result in the underestimation of short trips, whilst the accuracy of home and work trip 

identification is much higher than the identification of other destinations and thus 

journey purposes (Isaacman et al., 2011; Steenbruggen et al., 2015; Wang et al., 

2017). There is inevitably also some age and temporal bias in using a dataset mainly 

based on mobile phone activity, as younger people are both more likely to have and to 

use their mobile phone more often, and phone use tends to peak in the afternoon / 

evening (Engelmann et al., 2018; Louail et al., 2014). Notably, people in the West 

Midlands were identified as being much more likely to switch their phone off regularly, 

which could reduce temporal bias, as the phone would be detected when switched on 
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in the morning (ONS, 2015). Proprietary and privacy concerns mean that the product 

available is usually anonymised and aggregated at the mobile phone operator’s 

discretion, which, depending upon the methods used in such pre-processing, may 

result in a dataset more or less suited for analysing travel behaviour and joining with 

socio-demographic data (Steenbruggen et al., 2015; Wang et al., 2017). 

The pre-processing of Telefonica’s dataset prior to it being made available to the 

authors involved extracting records from regular customers with personal contract 

mobile phones7 for whom home locations could be reliably calculated, translating these 

records into trips made by anonymised residents, and then expanding the number of 

recorded trips made by each resident in a geographic area on a daily basis to match 

the population of that area and account for lower mobile phone use by age (Duduta et 

al., 2016; Engelmann et al., 2018). Some population bias may remain where the official 

statistics at a fine spatial scale used for expansion have not kept pace with newer 

residential or commercial development and thus population change (Engelmann et al., 

2018). The data is disaggregated into the matrices shown in Figure 6.1 of road and rail 

trips; by periods within the 24-hour day: AM peak, inter-peak, PM peak, and night; and, 

very broadly, into journey purpose and direction, with ‘commute trips’ defined as direct 

journeys between home and a regular, identifiable place of work. Different types of 

road users, such as bus travellers, cyclists, or commercial vehicles are not 

disaggregated.  

                                                           
7 Business contracts and the use of other devices such as tablets are excluded to avoid double counting 
individual users. There are also checks to exclude overseas tourists or others not regularly using the network. 
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Figure 6.1: Structure of MND matrices 

The journey purposes are determined through algorithms that identify ‘points of 

interest’ for customers, the most frequent ones with the longest dwell times being home 

and work (or education), and trips are inferred to occur between them, although short 

stops, like short trips, are often under-represented due to the more limited likelihood of 

mobile phone activity (Duduta et al., 2016; Engelmann et al., 2018). Therefore, 

although defined in the same manner in both this dataset and national surveys, the 

MND picks up more ‘commuting’ trips than the 15% of trips categorised as ‘commuting’ 

in the National Travel Survey (Department for Transport, 2017a). However, in both 

methodologies, travelling on business, travelling to workplaces which vary from day to 

day, or making linked trips, such as to escort a child to school, go shopping, or visit a 

gym, are all assigned to either ‘home-based other’ or ‘non-home-based’ trip categories. 

Thus, many journey purposes are not specified within the dataset, but there is clear 

delineation between commuting and other trips, which is of primary interest to this 

study of the journeys people make under storm conditions. 
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The contract between Telefonica and the Transport Systems Catapult and their 

interpretation of the European Union’s General Data Protection Regulation results in 

legal restrictions that any matrices provided to third parties aggregate trips into no more 

than 1000 geographic units no smaller than Middle layer Super Output Areas (MSOAs) 

and comprise a minimum sample of 10 days ‘averaged’ for each set of matrices 

provided. Thus, the dataset used in this chapter comprised a geographic subset of 573 

MSOAs within a 40km or 25 mile buffer of Birmingham, UK during an extended period 

of thunderstorms, intense rainfall, and flash flooding occurring in the afternoons and / 

or evenings of Tuesday, 7 June, Wednesday, 8 June, Friday, 10 June, and Tuesday, 

14 June, as well as during the mornings of 15 and 16 June, and later in the evening on 

16 June. This run of storms and their timing was a key reason for choosing the study 

area. The 40 matrices representing ‘storm conditions’, were averaged from the trips 

made on weekdays between 6 and 17 June 2016, and enable analysis of recurrent 

severe weather that arrived with little warning and caused substantial disruption to 

urban transport networks, including road closures, accidents, rail delays / 

cancellations, and infrastructure damage during working days and peak periods. With 

two full working weeks, any noise from intra-weekly, intra-personal patterns of part-

time or flexible working should not influence the analysis, nor should any geographic 

variation in the impacts of individual storms during the study period. A second set of 

40 matrices for the same area was derived from approximately 5 weeks either side, 19 

April to 22 July, excluding weekends, bank holidays and the school half-term, and 

offered a ‘non-storm conditions’ sample for comparison.  
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Figure 6.2a: Study Area          Figure 6.2b: MSOAs outlined in purple 

The study area is depicted in Figure 6.2a, and extends beyond the major 

conurbation to encompass surrounding towns and also more rural areas. Figure 6.2b 

shows the MSOAs to which the trip data was aggregated. MSOAs are designed for the 

presentation and comparison of neighbourhood statistics, with populations of between 

5,000 and 15,000 people or 2,000 and 6,000 households, and are also the level at 

which the UK Office of National Statistics (ONS) aligns ‘workplace zones’. Such a level 

of spatial granularity offers little insight into changes of route or variation in short trips, 

particularly in the smaller urban MSOAs, which are often missed by MND in any case. 

However, the spatial unit is designed to capture socio-economic and geographic 

characteristics that tend to be consistent at the neighbourhood level and represent who 

lives, works or visits there. Since this chapter is particularly interested in comparing 

commuting and other trips made by the same groups of people, the key socio-

economic characteristics are derived from 2011 census tables on economic activity, 

namely the ratio of the MSOA’s resident population, aged 16-74, who are full time 

employees, part-time employees, self-employed, or retired (ONS, 2014). Also included 
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is the residential population density from 2016 population estimates (ONS, 2017). Data 

for workplace population density and the employment status of the workplace 

population in destination MSOAs balance the resident population variables.  

Whilst the census-derived statistics offer key explanatory variables for the 

production and attraction of commuting trips, it was important to include data on land 

use or amenities that might produce or attract trips for non-commuting purposes. 

Therefore, using data from the crowd-sourced Open Street Map platform8 on ‘points of 

interest’; the locations of supermarkets, convenience stores, banks and post offices 

were mapped onto the MSOAs. These types of amenity were chosen because, 

especially over a two week period of storm conditions, food shopping and personal 

business are examples of regular maintenance trips not made for work or education. It 

should be noted that education trips are not considered in this study as the journey 

purpose categories in the Telefonica dataset class some education trips as commute 

trips (if they appear year-round rather than term-time), some as other trips, and would 

likely have missed the many education escort trips that are short in distance or dwell 

time. Rather, this chapter considers how fixed or flexible commute and non-commute 

trips appear to be for maintaining accessibility under storm conditions.  

Finally, to enable some qualitative analysis of the alignment between changes in 

behaviour and physical access, details of the transport impacts of the storms (and 

school closures) were found in media reports (Authi et al., 2016a; 2016b; Brown, 2016; 

Campbell, 2016; Campbell and Richardson, 2016; Hurst, 2016; Hurst et al., 2016a; 

2016b). Although the level of detail about lengths of road flooded or when precisely 

                                                           
8© OpenStreetMap contributors, licensed under the Open Database Licence. Information on this and the map 
tiles used in Figure 6.2a can be found at https://www.openstreetmap.org/copyright.  
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infrastructure was closed and reopened was not precise, some of the named locations 

and major routes listed in the media reports were entered into Google Maps to obtain 

approximate geographic coordinates of the disruption and plot them on Figure 6.3. 

6.2 Methods 

In order to explore and model the patterns in the data described in the section 6.1, 

further aggregation was required. The MND was provided in two sets of 40 matrices 

as shown in Figure 6.1. Each matrix comprised of 328,329 (or 5732) cells, recording a 

total of over 16 million trips. Comparing the total trip numbers from each of these 

matrices did offer some insights, which will be discussed in section 6.4. However, for 

the visual and statistical analysis, the 40 matrices for the storm conditions sample were 

subtracted from the 40 for the non-storm conditions or control sample to provide 40 

‘difference’ matrices. Naturally, these differences are sometimes positive, sometimes 

negative, and, in many cases, negligible, particularly in the reactive circumstances of 

the afternoon thunderstorms in this case study. Thus, the ‘difference’ matrices include 

a substantial proportion of null data. Some of these are integral to the analysis, but 

others are ‘false’ zeroes, as wherever a particular pair of MSOAs in the study area do 

not generate any flows between them, the null return in the ‘differences’ matrices 

provide no indication of behavioural change. There is precedent to remove any inter-

MSOA flows lower than five prior to analysis (Hincks et al., 2018), but that was for 

commute trips only, whereas this study also considers other types of trips. If pairs are 

removed only where flows are low for all journey purposes, many uninformative 

observations will remain for each journey purpose individually. If flows for each journey 

purpose are removed for model estimations of that purpose, comparison of any effects 

that occur across journey purposes could be masked. Therefore, the maps and 
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modelling are based upon the sum of the differences in flows by road from / to each 

MSOA to / from every other MSOA to create trip origin / destination vectors rather than 

matrices. This is the dependent variable in equations (6.1) and (6.2). The 573 origin 

MSOAs are represented by (i) and the 573 destination MSOAs by (j). These equations 

show only the explanatory variables used in the final models, as discussed in the third 

results section, 6.5. 

Non-Storm Day Tripsi - Storm Day Tripsi =  𝛼 + 𝛽Residential Population Densityi +       
𝛽Food Shoppingi + 𝛽Personal Businessi + 𝛽Ratio of Part-time Employeesi +              

𝛽Ratio of Self-employedi + 𝛽Ratio of Retired Personsi +                                    
𝛽Personal Businessi : Ratio of Retired Personsi + 𝜀 i               (6.1) 

Non-Storm Day Tripsj - Storm Day Tripsj =  𝛼  + 𝛽Workplace Population Densityj +   
𝛽Personal Businessj + 𝛽Ratio of Self-employedj +                                              
𝛽Personal Businessj : Ratio of Self-employedj + 𝜀 j               (6.2) 

Modelling origin and destination separately also allows the relevant geographic and 

socio-demographic variables to be attached independently to each MSOA, i.e. 

workplace population variables are only attached to destinations. Thus, if geographic 

or socio-demographic characteristics do result in varying levels of dynamic 

accessibility and travel demand during adverse weather, measures to increase 

flexibility and resilience might be targeted at resident or workplace populations 

respectively. Journey purpose and the relationship between commuting and other trip-

making during disruption when dynamic accessibility is significantly altered is of 

primary interest in this study. MND does not enable sufficient spatial granularity to 

identify route changes, modal switch (beyond the very broad ‘road-based’ and rail), 

changes in short trips, or other nuances of how flows shift around the transport 

network. Rather, it is ideal for considering where flows do or do not start and conclude 

during irregular events, and what might influence these patterns by trip purpose, which 

are also estimated separately for a more direct comparison of effects. Since ‘home’ is 
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the origin for inbound as well as outbound ‘home-based’ trips, inbound and outbound 

trip numbers are summed to minimise confusion, although it is important to recall that 

not all of these will be ‘return’ trips between one O-D pair. Rail trips make up only 1% 

of the observations for both sample days, so they are considered qualitatively in section 

6.3, but excluded from the statistical analysis. The various time periods are considered 

in section 6.4, but are also excluded from the statistical analysis in favour of daily totals, 

which offer greater variation between the storm and control samples.  

The descriptive statistics for the origin model estimations, including those not 

included in the final models, are shown in Table 6.1. Those for the destination 

estimations are shown in Table 6.2. All descriptive statistics are the mean values and 

ranges by MSOA. The trip differences are as described in equations (6.1) and (6.2), 

whilst density and amenity statistics are numeric and socio-economic statistics are 

ratios. 

Table 6.1: Descriptive statistics of variables for Origin MSOAs 

Origin MSOA Variables Mean St. Dev. Min Max 

Difference home-based work trips by road -268.4 189.8 -1999.0 87.0 

Difference home-based other trips by road 265.9 265.0 -563.0 2406.0 

Residential Population Density (per km2) 3416.2 2267.7 46.4 17809.6 

Food shopping (no. of supermarkets and 
convenience stores in MSOA)  1.7 1.8 0 13 

Personal business (no. of banks and post 
offices in MSOA) 0.5 1.6 0 17 

Ratio of Full-time Employees (within total 
residential population) 37% 7% 6% 54% 

Ratio of Part-time Employees (16-30 hours 
per wk) 14% 2% 3% 18% 

Ratio of Self-employed 8% 3% 1% 19% 

Ratio of Retired Persons 14% 4% 1% 28% 
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Table 6.2: Descriptive statistics of variables for Destination MSOAs 

Destination MSOA Variables Mean St. Dev. Min Max 

Difference home-based work trips by road -268.4 186.3 -1928.0 67.0 

Difference home-based other trips by road 265.9 273.3 -687.0 2650.0 

Food shopping (no. of supermarkets and 
convenience stores in MSOA)  1.7 1.8 0 13 

Personal business (no. of banks and post 
offices in MSOA) 0.5 1.6 0 17 

Workplace Population Density (per ha) 13.2 23.8 0.1 470.9 

Ratio of Full-time Employees (within 
workplace population) 54% 11% 30% 87% 

Ratio of Part-time Employees (16-30 hours 
per wk) 24% 5% 6% 41% 

Ratio of Self-employed (full or part time) 18% 8% 3% 40% 

6.3 Results I: The Geography of Storm Impacts and Response 

Due to the nature and timing of the storms and the minimal warning, it was important 

to identify whether any major changes in travel patterns were simply reactions to the 

locations of disruption. Figure 6.3 shows key road impacts as crosses on a map of the 

differences in total home-based road trips by trip origin MSOA, and school closures 

(on 9 and 15 June) as crosses within rectangles. The darker shading is where fewer 

trips were generated under storm conditions compared to non-storm conditions, whilst 

the palest hues represent more trips during the storm sample beginning and ending at 

those home locations. 

Figure 6.3 reveals few obvious connections between closed or flooded roads and 

schools and fewer trips generated under storm conditions. For example, around 

Leamington Spa and Warwick in the southeast of the study area, large reductions in 

the production of round trips cannot be matched to records of any major impacts in the 

media search. Nor is there a clear pattern around schools reported to have suffered 

closures, although it may be that the home locations and catchment areas of different 
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schools are not closely aligned to the MSOAs. The exception is the urban MSOA that 

encompasses the area just to the north and east of Birmingham city centre, which had 

the greatest reduction in home-based return trips during storm conditions. Within this 

area, media reports indicate that the A38 Aston Expressway flooded at a junction 

known as Dartmouth Circus, and in both directions, including the Queensway tunnel 

into the city centre. This flooding occurred on the 8th, 10th, and 14th of June; 3 of the 6 

stormy days in the study period, and on a fourth day a pothole attributed to the flooding 

caused further disruption. In comparison, most other reported incidents appeared to 

affect a specific link on only one or two of the storm days, rather than throughout the 

period. Overall, however, there is no discernible pattern between the difference in trips 

originating in MSOAs and the known impacts of the June storms. The absence of 

obvious links between infrastructure disruption and changes in trips numbers supports 

the hypothesis put forward in this chapter: changes in travel demand, particularly in 

reactive circumstances, are affected by pre-existing geographic or socio-economic 

characteristics that correlate with spatial and temporal flexibility as modelled in section 

6.5. 
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Figure 6.3: Differences in total home-based trips by road for each Origin MSOA; the 
darker the shading, the fewer trips under storm conditions. Also locations of major 
storm impacts on the road network indicated by crosses, school closures by crosses 
within rectangles. Key locations labelled. 

Figure 6.3 does show that a number of areas with the greatest reduction in road 

trips under storm conditions are around the West Coast mainline stations of Stafford, 

Lichfield, Tamworth, Coventry, Sandwell and Dudley, and around the busy station at 

central Birmingham 
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Leamington Spa, raising the question of modal switch from road to rail. According to 

the media reports, inter-urban services and the West Coast Mainline appear to have 

been minimally affected, although certain local services to places such as Rugeley 

Trent Valley and Stourbridge Junction were subject to delays, cancellations and 

replacement bus services. As discussed in the next section, a comparison of the totals 

from the original matrices did show an increase in rail trips for the storm sample for all 

but the night time period. However, mapping the differences in rail journeys was not 

particularly enlightening, rail journeys make up just 1% of the total trips in both 

averaged sets of matrices, and without individual data or other qualitative sources such 

as social media and journey planning bulletins at the time, direct modal switch cannot 

be confirmed. MND appears not to be an ideal data source to identify modal switch in 

response to severe weather, even for road to rail. Instead, by focusing on the road-

based trips in the modelling, most of the available dataset is used in the analysis in the 

next two sections. 

6.4 Results II: A Summary of Travel Behaviour Change 

Comparison of the total trip numbers recorded in each of the 40 matrices for storm 

and non-storm conditions revealed further insights. Time switching, which the literature 

suggests is likely to be the most common response, especially for a sudden event, 

appears to have occurred. There were more total trips by road in the AM peak period 

under storm conditions and fewer trips for the inter-peak, PM, and night, as shown in 

Figure 6.4, which matches what would be expected considering the afternoon and 

evening saw the worst storm impacts. Also, whilst there were more home-based work 

trips in every period in the storm sample, there were fewer home-based other trips 

outbound, but slightly more inbound in the AM peak. This suggests that some people 
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may have been trying to complete certain personal business or other trips before the 

storms and return home early. However, since mobile phone use normally tends to be 

higher in the afternoon and evening, and conversely lowest between 2300 and 0800 

(Louail et al., 2014), it may be that the use of mobile phones as well as travel behaviour 

changes when there are unusual events, if mobile phone users are more likely to check 

for updates, weather warnings, coordinating with others, etc. Whilst this could mean 

more AM trips are detected under storm conditions than non-storm, any increase in 

detections is also likely to reduce the daily expansion factor somewhat so that the 

changes both in physical travel and mobile phone use appear to balance out within the 

dataset of trip numbers. Furthermore, these temporal differences are less than 1% of 

the totals for each time period. 

Figure 6.4 shows that there were more commute trips under storm conditions 

compared to the non-storm sample in every period, inbound and outbound, which 

partly reflects the lack of flexibility among commuters compared to other travellers, and 

is well-documented in the literature (Böcker et al., 2013; Liu et al., 2015; Sabir et al., 

2010, Sabir, 2011). However, if commuting trips are fixed and there was no change in 

behaviour by commuters, little to no change would be expected in the numbers of 

commute trips. Yet, the increase in home-based work trips and decrease in home-

based other trips within the study area for the storm sample matrices are both 

significant at p < 2.2e-16 for the former and p = 1.01e-09 (outbound) and p = 3.919e-

07 (inbound) for the latter according to Welch’s t-tests. Seen another way, commute 

trips, outbound and inbound, make up 18% of the total daily trips within the study area 

under non-storm conditions, but rise to 20% of the total daily trips under storm 

conditions (or 23% and 25% of all home-based trips). Meanwhile, the overall difference 
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in trips if all modes and purposes are taken together is insignificant, comprising of only 

0.3% of the total road trips.  

 
Figure 6.4: Difference in total trips by road between the non-storm and storm 
matrices by journey purpose and period. 

One potential explanation for the increase in commuting trips and the decrease in 

other trip types is a reduction in linked trips or trip chaining, defined as “where people 

combine two or more trips for differing purposes” (Le Vine et al., 2017, p5). If it is more 

difficult or takes longer to get to and from work, then travellers reduce any intermediate 

stops they normally make, as reflected in the decrease of other and non-home-based 

trips, which may have actually been indirect trips to work. An extensive study of 

commuting and travel patterns using mobile phone data identified that those who travel 

further in their daily lives often travel to fewer regular locations, the predominant one 

being work, and are more predictable in their travel (Song et al., 2010). Under storm 

conditions, commuters are likely to travel ‘further’ if there are diversions, or for longer 

than normal if there is traffic or speed restrictions. Therefore, the reduction in an 

individual’s dynamic accessibility due to the weather, especially later in the day when 
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they may already be ‘locked in’ to certain travel options makes them choose to switch 

not just their routes or timing, but also their journey purpose, prioritising their direct 

commute over other activities. Although individual level data could have further 

supported this argument, the analysis presented in the next section provides more 

evidence of such choices between journey purposes. 

6.5 Results III: Modelling Origins and Destinations 

Tables 6.3 and 6.4 show the results for the final model estimations for the MSOAs 

as origins and destinations respectively, as shown in equations (6.1) and (6.2). Multiple 

combinations of all the independent variables listed in Tables 6.1 and 6.2 were initially 

tested in the relevant model estimations to better compare between models for the 

different journey purposes and check for any unexpected interactions, even though 

logically some explanatory variables would not be relevant to certain travel behaviours, 

such as employee ratios for home-based other trips, whilst others may not have the 

expected influence due to their ubiquitous nature, such as the high volume of full-time 

employees within most MSOA workplace populations. Ultimately, only the variables 

with significant coefficients and / or interactions are included below. Positive 

coefficients describe how many fewer daily trips under storm conditions are likely for 

each incremental change in the independent variable for a given MSOA, whilst 

negative coefficients indicate more trips under storm conditions. 
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Table 6.3: Regressions for Origin MSOAs as equation (6.1) 

Origin MSOA Variables 
Difference in 
Commute Trips by 
Road 

Difference in 
Home-based Other 
Trips by Road 

Residential population density 0.032***  

  (0.004)  

Food shopping  -9.759**  16.582** 

  (3.907) (6.517) 

Personal business  -88.288*** 102.822*** 

  (7.654) (12.543) 

Ratio of Part-time Employees 1,838.477***   

  (412.780)   

Ratio of Self-employed 847.197***  

 (265.903)  

Ratio of Retired Persons 1,047.154*** -236.091 

  (214.110) (253.889) 

Personal business : Ratio of Retired 
Persons 

415.915*** -529.202*** 

  (63.848) (106.310) 

Constant -816.007*** 249.893*** 

  (63.310) (40.617) 

Observations 573 573 

R2 0.449 0.187 

Adjusted R2 0.442 0.181 

Residual Std. Error 141.814 (df = 565) 239.770 (df = 568) 

F Statistic 
65.694***            
(df = 7; 565) 

32.656***            
(df = 4; 568) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 6.4: Regressions for Destination MSOAs as equation (6.2) 

Destination MSOA Variables 
Difference in 
Commute Trips by 
Road 

Difference in 
Home-based Other 
Trips by Road 

Workplace Population Density -1.952*** 3.474*** 
 

(0.335) (0.577) 

Personal business  -62.462*** 54.658*** 
 

(8.755) 15.054 

Ratio of Self-employed 638.998*** -322.363** 
 

(74.652) (128.359) 

Personal Business: Ratio of Self-
employed 

297.675*** -200.185* 
 

(64.671) (111.196) 

Constant -346.173*** 263.257*** 
 

(16.187) (27.833) 

Observations 573 573 

R2 0.466 0.267 

Adjusted R2 0.463 0.262 

Residual Std. Error 136.554 (df = 568) 234.796 (df = 568) 

F Statistic 124.126***          
(df = 4; 568) 

51.711***            
(df = 4; 568) 

Note: *p<0.1; **p<0.05; ***p<0.01 

These tables reinforce the conclusions of section 6.4, that the influence of 

geographic and employment characteristics on travel behaviour response vary most 

between commute trips and other home-based trips. Every coefficient that is positive 

for commute trips is negative for other trips and vice versa. Since there were 

significantly more commute trips in the storm matrices than in the control sample, and 

significantly fewer other types of trips to / from identified home locations, the 
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regressions above offer more insight into what this could mean in terms of the 

fixedness or flexibility of trip purposes.  

First, it should be acknowledged that the overall reduction in ‘other’ trips, and even 

the reduction in commute trips in some MSOAs, does not necessarily mean that 

participation in the activities that generate those trips is cancelled or reduced. Some 

people can and do access work tasks, goods and services online or could have 

consolidated certain trips on the few days within the period of storms when there was 

less disruption, including the intermediary weekend, for which data was not included. 

The latter is particularly likely in the case of food shopping, and the model shows that 

the number of food shops in a destination MSOA had no significant correlation with 

any change in trip numbers. Even for origin MSOAs, the effect is fairly small and only 

of medium significance. Supermarkets and convenience stores are also relatively 

evenly distributed across the study area, and are within walking distance of home or 

workplaces for many, so the number of such trips recorded within both the storm or 

non-storm matrices could be underestimated by the MND. If residents still made a 

normal number of trips to food shopping destinations during the disruption, but chose 

those shops closer to home under storm conditions so they could make more direct 

journeys to work, this could explain the difference that does manifest in the model, 

where those living with more food shopping nearby are correlated with more commute 

trips and fewer ‘home-based other’ trips under storm conditions. Either way, food 

shopping is an example of an activity that is necessary, but not fixed in time or space, 

enabling people to choose to make fewer, more local trips to fulfil those needs whilst 

still prioritising the ‘direct’ commute. 
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In comparison, banks and post offices are much more scattered, as shown in Figure 

6.5, have shorter opening hours / days, and their presence and number had a highly 

significant influence on more commuting trips and fewer other trips made under storm 

conditions. The inclusion of this variable also had a substantial effect on the model’s 

goodness of fit, suggesting that it is of particular importance to travel behaviour change 

during the period of disruption. As banks and post offices tend to be located in 

commercial centres, it may be that this variable is highlighting the presence of a wider 

built environment and land use mix. In particular, there may be more commuting trips 

to and from such places because there are more jobs there, but fewer ‘other’ journeys 

ending in places where the shopping and services available are generally discretionary 

for those who do not work there. Indeed, the higher the density of working population 

in an MSOA, the more commute trips attracted under storm conditions and the fewer 

other trips, supporting the proposed explanation that people are visiting fewer ‘other’ 

destinations on the way to and from work, including perhaps personal services. Yet the 

relationship between working population density and trip differences might be due to 

the commuter pull of MSOAs with factories, business parks, or other large employers, 

rather than mixed-use commercial centres. Furthermore, the influence of a commercial 

centre in an MSOA of large area, but likely lower population, will not be the same as 

more densely populated MSOAs, yet the coefficient for neighbourhoods with higher 

residential population densities suggest they are attracting fewer commute trips under 

storm conditions. So whilst settlement pattern influences revealed travel demand and 

journey purpose during adverse weather, the response is complex and it is as difficult 

to identify patterns from Figure 6.5 as from Figure 6.3. Thus, the presence of amenities 
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such as banks and post offices may relate more to who is making trips to use such 

services or access particular types of employment, rather than their location. 

 
Figure 6.5: Density of personal business amenities (banks and post offices) in the 
study area. 

Thus, the coefficients for the interaction terms of personal business with retired 

persons by origins, and personal business with self-employed people by destinations 

offer more insight into the non-discretionary journeys to places with banks and post 
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offices. Within the working age resident and workplace populations, self-employed 

workers travelled less to their regular place of work, or in other words, commuted less 

under storm conditions, perhaps an indication of their greater flexibility to work 

elsewhere, as they travel more to ‘other’ destinations. However, ‘other’ destinations 

like banks and post offices may be important not as alternative workplaces, but for the 

business services provided, e.g. to deposit income or pay invoices, or due to other 

nearby amenities in commercial centres. The interaction term suggests that self-

employed people may choose different commercial centres to which access may be 

less disrupted, but these types of trips are still being made. Likewise, retired people 

may have the flexibility to make fewer work journeys if they are still involved in the local 

labour market, but collecting their pension or visiting other services such as 

pharmacies, which tend to be in similar locations, is not so optional. Thus, the 

proportion of retired people is correlated with more ‘other’ trips and the interaction term 

with personal business is significant.  

Whilst the correlation between retired persons and fewer commute trips generated 

under storm conditions requires little explanation, the models also show similar 

significant correlations between the proportion of self-employed workers and part-time 

employees within the working-age resident population of an MSOA. As the sample is 

taken from two working weeks of data, this effect cannot be attributed to any regular 

variation in which days of the week part-time and self-employed residents work. Also, 

the lack of significant effects that these variables had on the difference in ‘other’ trips 

suggests that the change is not due to a recorded switch in journey purpose, say 

because someone is working at a different destination. Therefore, perhaps enough 

part-time employees and self-employed residents were able to cancel their work trips 
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altogether during the period of severe weather to result in these significant coefficients. 

Returning to the concept of dynamic accessibility, this in turn can be interpreted as 

part-time and self-employed workers having more spatial (if they worked from home) 

and temporal flexibility in terms of when, how long, and how often they work. 

Meanwhile, there were no significant effects on trip differences based upon the 

proportion of full-time employees, who did not change their travel behaviour enough to 

be identified in either the origin or destination models. This is more as would be 

expected from the literature, although considering the fewer commutes made by part-

time and self-employed residents, the additional commutes attracted to places with 

high workplace population density, and the significant additional commute trips 

discussed in the previous section, it seems likely that full-time workers are making 

more direct commute trips under storm conditions, but the high proportion of such full-

time employees in the working age population is masking this variation. 

6.6 Discussion and Conclusion 

This chapter considers a period of transport disruption that occurred due to storms 

that arrived with little warning, caused sudden pockets of localised flooding, and 

affected journeys mainly in the PM peak period. Unfortunately, the MND data only 

became available and the storm events selected in 2018, so further detail on the 

response to the storms that might have been gathered from social media, transport 

operators, and other responsible parties could not be sourced in retrospect, although 

other studies note the importance of such sources (Chan and Schofer, 2014; Pender 

et al., 2014). However, media reports show that residents, workers, and visitors to 

Birmingham and surrounding areas had little warning of these disruptions, and not just 

the infrastructure, but individual journeys were affected by the impacts, with hundreds 
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of calls to emergency responders on the afternoon of Wednesday, 8th June alone 

(Hurst, 2016). As the detail of how travel behaviour may have changed in terms of not 

only other modes, but also route or travel time is not considered, it may be that some 

commuters and other travellers did make resilient choices for work journeys, such as 

taking an unaffected bus service or a less flood-prone route. Still, the MND from the 

averaged period of multiple days of on-and-off disruption demonstrated that there were 

significant and quantifiable changes in accessibility when compared to the ‘non-storm’ 

control period, and these could not be clearly linked to the locations of disruption. 

Instead, sections 6.4 and 6.5 support the insights that the delays and disruption caused 

by sudden, afternoon storms reduce dynamic accessibility, such that the travel 

behaviour response of working adults is to choose which journeys are fixed, usually 

commuting, and which are flexible in time and space.  

For many, work is fixed, and the higher the density of employment, the more trips 

that are attracted to the destination under storm conditions than under non-storm 

conditions, suggesting commute journeys are rarely cancelled, as was expected from 

previous studies. Yet these survey-based studies focus on the minimal change in 

reported commuting trips, whereas this study identified a significant revealed increase 

in such trips between home and a regular place of work, counter to the decline in these 

narrowly-defined journeys observed over the last couple of decades in the UK. One 

major cause of this overall decline is identified as trip chaining, where multiple activities 

are accomplished more efficiently by reducing the number of round trips (Le Vine et 

al., 2017). If the opposite is happening under storm conditions, then, whilst the 

literature identifies switching routes, modes, and time of travel, this empirical study 

concludes that an additional individual travel behaviour response is, in simple terms, 
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to switch the frequency of journeys for different purposes. The MND reveals this 

change in journey purpose as fewer home-based other and non-home-based trips and 

more direct commuting, and although travellers may be making more nuanced choices 

about their participation in different activities, the prioritisation of commuting has 

implications for resilience and policy. 

In particular, if this switch results in less participation in non-work activities over a 

full two-week period, individual dynamic accessibility to a variety of essential activities 

and services for those who do not have or do not perceive they have the flexibility to 

avoid the risk of travelling to work at such times is affected. Furthermore, whilst 

switching from multi-purpose trips to commute-only trips might result in some reduction 

in total trips taken during times of adverse weather and disruption, the reduction in this 

case study was insignificant and did not mean less travel, less risk, or more resilience 

for the traveller. Retired adults (under 75) and part-time and self-employed workers 

appear to have more flexibility in time, space, or both; to cancel their commute, work 

from home, or work longer hours on fewer days, resulting in fewer home-to-work 

journeys from places where more of them live. This could mean such groups are more 

resilient, particularly if they are therefore still able to maintain access to other activities 

and services, such as personal business, which for retired and self-employed people 

could be more important or ‘fixed’ than their commute trips. Ideally, they are able to 

maintain this access by travelling during the periods without disruption, or substituting 

online access.  

As this chapter has not considered the detail of how travel behaviour may have 

changed in terms of not only other modes, but also route or travel time, it may be that 

many commuters and other travellers did make resilient choices for what they 
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considered mandatory journeys, such as taking an unaffected bus service or a less 

flood-prone route. The media reports confirm, however, that many travellers were 

stranded or so severely delayed in their journey that commuters’ productivity was 

affected and essential, non-work trips may well have been postponed for up to two 

weeks. Therefore, the more flexibility in time and space that can be attached to different 

journey purposes, particularly journeys for work, the more resilient the travel behaviour 

response could be, especially where the disruption is neither expected nor long-term.  
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7. BROADBAND SPEEDS AND INTERNET ACTIVITY9 

A key question that arises from the analyses in Chapters 5 and 6 is how to measure 

whether online access replaces travel during storm events, and to gain some insight 

into the spatial or temporal extent of the increases in internet activity that respondents 

reported in post-event surveys following case studies of long-term and extreme 

disruption (Allen et al., 2015; Kaufman et al., 2012; Marsden et al., 2016). As discussed 

in Chapter 3, ICT often increases both the spatial and temporal flexibility of individuals 

and groups of individuals, as well as offering alternative means of access, which, in 

turn, has the potential to make the response of those individuals to severe weather, 

risk and transport disruption more resilient in a number of ways. The previous two 

empirical chapters provide further evidence of the importance of spatial and temporal 

flexibility in enabling the avoidance of the risks of travelling during severe weather, as 

well as offering redundancy when disruption affects particular modes or geographic 

areas. Yet maintaining participation or access to the planned activity is also an 

essential part of resilience, and for those who are able to stay home and reduce their 

risk, online access may mean the difference between continued participation and 

productivity or reduced accessibility.  

7.1 Contention in Context 

Most online access from homes in the UK is achieved via fixed broadband networks. 

The geographic and demographic variation in internet availability, quality, skills, and 

accessibility is recognised as a policy concern by Government and researchers alike, 

who aim to bridge ‘digital divides’ in order to maximise the ability of citizens and 

                                                           
9 The majority of this chapter is under review following submission as: Budnitz, H., Tranos, E., Chapman, L. 

‘Exploring the Influence of Weather Extremes on Internet Activity and Resilient Accessibility’, Applied 
Geography. 
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businesses to participate fully in an increasingly online world, including in the transport 

sector (Blank et al., 2018; Cottrill, 2018; OfCom, 2014; Philip et al., 2017; Riddlesden 

and Singleton, 2014; Tranos et al., 2013). However, investment in the availability and 

speed of fixed broadband services can take priority over universal and reliable services 

(Philip et al., 2017), and the interaction between geographic and temporal variation in 

online access, whilst highlighted as an operational reality of internet service provision, 

has received less attention. Internet availability and quality, and thus its ability to offer 

an accessibility alternative to travel, is time-sensitive, subject not only to outages, but 

also to what OfCom, the industry regulator of Information and Communication 

Technologies (ICT) in the UK, calls “network contention (slowdown during busy 

periods)” (2017, p12). This slowdown is a measurement of relative broadband 

download speeds at different times, and how quickly information and content is either 

being copied from the internet for local storage or streamed in real time. Upload speeds 

are also affected.  

OfCom measures contention during the evening peak of 8-10pm relative to a 24-

hour average as an indicator of broadband performance for different Internet Service 

Providers (ISP). However, contention can occur at other times, such as during spikes 

in demand observed due to mass streaming of sporting and entertainment events 

taking place outside of 'prime time' (OfCom 2014). If online connectivity is to offer a 

resilient alternative for interactions beyond the domestic sphere during storms, floods, 

and other times of transport disruption due to extreme weather, such events can be 

expected to cause a spike in demand for robust, quality internet services (Fu et al., 

2016). Indeed, a recent analysis of one of the London Internet eXchange Points or 

IXPs, which form the locally specific part of the wider internet service network, tracked 
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a large increase in the volume of data traffic during Storm Emma and the ‘Beast from 

the East’ in early March 2018, which suggested that people were working remotely, 

checking traffic updates more, and streaming video (Stubbings and Rowe, 2019). It is 

here proposed that such increased traffic causes measurable contention if internet 

activities are in unusually high demand because household members are unexpectedly 

home due to such extreme weather events, such as the Beast from the East, those 

studied in Chapters 5 and 6, or more generally during severe weather conditions. Thus, 

this chapter compares time-stamped, geo-located broadband speed tests during the 

case study weather events to those during the control periods, and also regresses 

download speeds against a number of daily weather parameters to assess how the 

latter affect the daily variation in internet use at the neighbourhood level. 

The exception to this is where the broadband connection is also disrupted and there 

is a time lag before operators can make repairs. During instances of weather-induced 

mass faults due to loss of power in the UK, such as during the high winds of Storm 

Jude on 28 October 2013 (Met Office, 2013), or when lightning strikes are widespread, 

outages, rather than delays, are most common and can result in increasing rather than 

decreasing broadband speeds, where services are still available. The flooding of ICT 

infrastructure, which can also cause outages, tends to have more lasting impacts, as 

such faults are often more complex and take more time to fix, resulting in a potential 

time lag for repair (Horrocks et al., 2010; Lazarus, 2013). Such time lags, along with 

the lack of consistent reporting make it difficult to pinpoint mass outages except via the 

occasional media report and add a layer of uncertainty to the analysis in this chapter. 

Where mass power or ICT outages are not reported in the media, the reports OfCom 

receives from ISPs, often during the later stages of an incident, are not available (John, 
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2017). There was a media report following Storm Jude, when, as highlighted in Figure 

7.1, recorded download speeds were faster than surrounding working week-days (800-

1800). This date was excluded as an outlier, but even where the dates of outages are 

unknown, there is some indication that unusual speed increases and decreases might 

balance each other in terms of ICT service quality. 

 
Figure 7.1: Calendar plot of mean download speeds (Kbps) in 2013 with 28 October 
circled in blue.10 

Therefore, the proposed method of analysing ‘contention’ as a proxy for internet 

demand and choosing online connectivity over physical travel is considered valid. This 

research explores the concept of contention as a means to gain new insights into how 

the internet offers a resilient access alternative to transport, and evidence of increased 

online interactions and activity in response to extreme weather. 

                                                           
10 These ‘calendar plots’ were created using functions in R from Carslaw, D. and Ropkins, K., 2019. Package 
‘openair’. 
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7.2 Data and Methods 

In order to test the influence of weather conditions on internet activity, data was 

provided by Speedchecker Ltd11, a private company that allows internet users to check 

their own broadband upload / download speeds. The result of every speed-check is 

stored with a timestamp and geographical coordinates captured using WiFi and GPS 

geolocation. Download speeds are “by far the most important feature for household 

users” (Nardotto et al., 2015, p336), and are more temporally variable, so are used 

here as a proxy for internet activity, although upload speeds are relevant, particularly 

for reliable video calling or transferring documents and will be discussed towards the 

end of the chapter (OfCom 2014). Datasets from Speedchecker Ltd have been the 

subject of previous studies on the geographic equity of broadband speeds (Riddlesden 

and Singleton, 2014), and on the service quality benefits of competition and local loop 

unbundling (Nardotto et. al, 2015), but whilst both studies investigated spatial variation, 

neither assessed the implications of daily variability or contention. Both mention that, 

even assuming fast connections to a property and proactive ISP management, speeds 

still vary throughout the day due to the level of use and ‘congestion’ at peak times, 

generally in the evening, when people are likely to be streaming video content for 

leisure purposes (Nardotto et al., 2015; OfCom, 2014; Riddlesden and Singleton, 

2014), yet neither overtly considers differences during the working day or between 

working days dependent upon weather events. 

In order to consider these differences, the first challenge is to match weather events 

which are known to have caused transport disruption during the working day to large 

enough samples of internet speeds in the same geography. The case study approach 

                                                           
11  http://www.broadbandspeedchecker.co.uk 

http://www.broadbandspeedchecker.co.uk/
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enables specific date ranges with and without weather events and reported disruption 

to be matched to geographical and temporal subsets of the data, whilst local media 

records can provide information on the transport impacts and any power or ICT 

outages. However, the relatively low number of observations in any given case study 

limits further division of the data within the modelling. Thus, Welch’s t-test methodology 

was applied to investigate the Storm Doris case study in Reading described in Chapter 

4, although with a comparison to four Thursdays either side of the event rather than 

only a single subsequent Thursday, as a 9-day moving average appeared to offer more 

robust results (Kalkstein et al., 2009). A test was likewise applied to the June 

convective storms in Birmingham using the same days to represent ‘storm’ conditions 

and the control period as described in Chapter 6. The results of these tests are briefly 

described in section 7.4, but the bulk of the chapter aims to model the impacts of 

defined parameters of extreme weather on internet activity at a greater spatial and 

temporal scale. Therefore, a subset comprising a much larger proportion of the 

Speedchecker Ltd data, encompassing all working days, was selected and then linked 

to weather variables and other control factors.  

The modelled subset incorporates 2,556,025 individual speed tests run on 1,239 

days from 2012 to 2016 in England and Wales during the working hours of 0800 to 

1800, Monday to Friday, excluding bank holidays and 24 December to 1 January 

inclusive.12 Outlier tests recording download speeds of under 0.5Mbit/s or over 

100Mbit/s were removed prior to analysis (Riddlesden and Singleton, 2014). The 

download speeds formed the dependent variable for a ‘hierarchical’ regression model 

                                                           
12 No speed-check data were available for the weekdays 6 March 2012, 11-14 February 2014 nor 22 September 
2016, presumably due to server or software failures. 
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that controls for characteristics relevant to individual tests as well as for higher-level, 

socio-economic and geographic attributes, which are assumed to be consistent over 

time and control for some differences of broadband supply and service ‘between’ 

defined areas, whilst testing for significant, time-variant or ‘within’ area effects such as 

weather (Bell and Jones, 2015). The model is set up as shown in equation (7.1), where 

i represents the individual speed tests, l represents the higher spatial level in which the 

speed tests fit, and t the time of the speed test. Nardotto et al. similarly varies predictor 

variables by higher geographic units, in his case the telephone exchange catchment 

(2015). The Test Speed variable represents the download speed for individual test i 

which took place in location l at time t. It is highly skewed, so a transformation using 

the logarithmic function is included in the model. B1 is the vector of coefficients for the 

fixed attributes of each spatial unit. 

log(Test Speedilt) = =  𝛼 + 𝛽0r + 𝛽1Distance to Nearest Exchangei +              

𝛽2Internet Service Provideri + 𝛽3Annual TrendT + 𝛽3weekdayt + 𝛽4Rainy Daylt + 
𝛽5Windy Daylt + 𝛽6Heavy Rainlt + 𝛽7Stormlt + 𝛽8Freezing Daylt + 𝛽9Snowfalllt +  
𝛽10Hot Daylt  + 𝜷1Control Variablesl + 𝜀 ilt                (7.1) 

As described in section 6.1, MSOAs capture geographic and socio-economic 

characteristics that tend to be consistent at the neighbourhood level: predominant land 

use, density, affluence, and accessibility, which affect not only travel behaviour, but 

also the ability to telecommute. Therefore, MSOAs were chosen as the most 

appropriate spatial unit, expressed with the index l, for applying the Control Variables 

in (7.1) which reflect the geographic and socio-economic context within which the 

individual tests occurred. MSOAs are also small enough geographic areas to control 

for supply-side variation, such as the type of connection available, technology used to 

manage the connection, and the length of wire from the street cabinet to a property, 

which often limits achievable broadband speeds for the end user in rural areas 
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(Nardotto et al., 2015; Philip et al., 2017). Data on street cabinet locations was not 

available, although the Distance to the Nearest [telephone] Exchange is included. To 

control for the choice of broadband package by individual households, the variable 

Internet Service Provider in (7.1) is divided into the broad categories of BT with 771,452 

customer tests, Virgin Media cable, which usually offers faster speeds but has limited 

bandwidth available for connections that serve multiple properties and thus suffers 

more from contention, with 447,008 tests, and the remaining 1,337,565 tests in the 

sample, which are from over a dozen larger and hundreds of smaller ISPs, most of 

which use BT infrastructure through local loop unbundling (Nardotto et al., 2015). The 

latter was A chi-square, likelihood ratio test: χ2(1) = 258516, p <.0001 confirmed that a 

model with ‘random’ intercepts, in other words, constants or intercepts that can vary 

between each of the 7,201 MSOAs in England and Wales, offers a significantly better 

fit than one with a single, fixed intercept (Field et al., 2012). Furthermore, tests of the 

intra-class correlation (ICC) suggests that about 9% of the variation in broadband 

speeds recorded can be accounted for by geographic location at the MSOA level 

(López-Bazo and Motellón, 2017). 

Annual average broadband speeds increased substantially over the five years. This 

time progression was expected, as the improvement of broadband coverage and 

speeds is a key government policy, although a comparison of speeds reported by 

OfCom to those in this dataset suggest that possible speeds are increasing faster than 

experienced speeds as shown in Table 7.1. 



104 
 

Table 7.1: UK annual mean speeds (Mbit/s) reported by OfCom (over 24 hours) and 
the annual means of the modelled dataset for working days in England and Wales. 

Year OfCom Data Modelled Data 

2012 12 8.9 

2013 17.8 12.8 

2014 22.8 16.6 

2015 28.9 19.5 

2016 36.2 23.9 

Thus, the time trend variable, ‘Annual TrendT’ in equation (7.1) controls for the 

annual, nation-wide improvement in broadband speeds, with 2012 coded as 1, 2013 

as 2 and so on. The time-variant variables, however, expressed with an index t in (7.1), 

are all at a daily level of granularity to match a traditional working-day subset of 

broadband speed tests. This is because, as described in the Introduction and reviewed 

in section 3.2, work (or education) activities are the most frequent, ‘non-discretionary’ 

interactions external to the home around which daily trip and activity patterns coalesce 

(Le Vine et al., 2017, Miller, 2005). As work is an essential activity for those in 

employment, trip volumes and concentrations show less variation between working 

days than between work days and weekends, or between Saturdays and Sundays, 

making daily, intra-personal variability more visible (Crawford et al., 2017), although 

an array of dummy variables (weekday in equation 7.1) representing days of the week 

(Monday, Tuesday, and so on) control for some residual variation. 

However, it is also important to note that the working day is not normally considered 

the peak time for internet activity and contention, which occurs in the evening, nor does 

it include the early morning hours until 0600, when there are unusually high speeds 

because activity is extremely low (OfCom, 2014; Riddlesden and Singleton, 2014; 

Nardotto et al., 2015). As technology improves and proliferates in the ‘digital age’, 
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remote or virtual access via ICT offer an alternative means to participate in a growing 

number of daily activities (Lyons, 2015), and those who purchase high speed 

connections consume more data of all sorts and use their connections for a variety of 

purposes (Hauge et al., 2010; OfCom, 2016). In other words, those who usually 

generate internet activity in the evening are likely to generate it during the working day 

if they are unexpectedly at home, whilst aggregation by working day also controls more 

for those who regularly generate internet activity during working hours, e.g. home 

workers, no matter the weather. Furthermore, weather impacts on transport 

infrastructure can be immediate or delayed, so aggregating weather parameters to 

identify daily extremes was deemed likely to capture more impacts than estimating 

weather effects at a more granular temporal scale.  

The weather variables in (7.1) aim to capture how certain weather conditions relate 

to internet speeds, and thus online activity. Weather observations are recorded by the 

UK Met Office, including the daily parameters relevant to this study: hourly rainfall 

aggregated to 24 hours, daily maximum wind speeds, daily maximum gusts, daily 

minimum and maximum temperatures, and observations of snowfall. These weather 

records are kept in the British Atmospheric Data Centre (BADC) archives and contain 

data from weather stations located throughout the UK (Met Office, 2006). However, 

weather doesn’t follow local administrative or statistical boundaries any more than 

does the transport infrastructure which is affected by that weather. Thunderstorms or 

other convective storms which may cause those more localised impacts, e.g. flash 

flooding, are unpredictable, and difficult to identify from incomplete observations of 

‘thunder’ in the weather records, and so are not included as a separate variable in the 

model. Thunderstorms with their likelihood of electrical discharge are also more likely 
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to affect ICT infrastructure and cause loss of connection than other weather systems 

(Deljac et al., 2016; Schulman and Spring, 2011), but again such effects could cause 

increased speeds, as they did in this dataset during a major outage reported in the 

media on 20 July 2016 (Titcomb, 2016). 

Therefore, synoptic, regional weather stations as shown in Figure 7.2 were chosen 

for both the completeness of their data and how well they represented each climatic 

region of England and Wales as defined by the Met Office and the World 

Meteorological Organisation (Met Office, 2016b, Dobney et al., 2009). Minimising the 

number of weather stations from which data inputs were gathered also acted as a 

quality control on the data, increasing its consistency. In more rural regions, such as 

Wales and East of England, stations closer to the larger population centres were 

preferred, stations near military or civilian airports / airfields proved most 

comprehensive, and the most exposed coastal and high altitude stations were avoided. 

These criteria helped ensure a more conservative identification of weather extremes, 

as such stations were unlikely to record the strongest wind gusts or lowest 

temperatures in a given region. They are expressed with an index lt in (7.1), as the 

regional weather is assumed to apply at the MSOA level within the model, although 

admittedly this is a trade-off between accuracy at the neighbourhood level and data 

quality and consistency for England and Wales as a whole.  
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Figure 7.2: Representative weather stations chosen for each Met Office ‘climate 
region’ (2016b). 

Daily, regional weather parameters were matched to the broadband speed tests by 

date and location, then transformed into binary dummy variables to better capture 

identifiable weather events. The most contentious dummy to set was that for Rainy 

Days, an issue cited in the literature, which recognises the complexity of individual 

response to precipitation, which may depend on season, time of day, or other factors 

(Hooper et al., 2014). In this study, a ‘Heavy Rain’ dummy was set at >= 15mm in 24 

hours according to Hofman and O’Mahony (2005) who reviewed daily variability in bus 

travel in Ireland, whilst iterations of the developing model were used to set a simpler 

‘Rainy Day’ dummy at accumulations of >= 2mm and < 15mm in 24 hours. The ‘Windy 

Day’ dummy captured days with wind speeds of levels 5 to 9 on the Beaufort Scale, 

whilst the Storm dummy captured any date / MSOA combinations with at least some 

precipitation and maximum gusts of level 10 ‘Storm’ and above (Met Office, 2016c). 

Maximum gusts, rather than maximum wind speeds, better capture extremes (McColl 
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et al., 2012), and minimised overlap between the ‘Windy Day’ and ‘Storm’ dummies. 

Furthermore, the Met Office considers strong winds as the most likely to have impacts 

on infrastructure and property, according to their publicity on their first trial of naming 

storms (Eysenck, 2016; Met Office, 2016a).  

An ice dummy was set where the minimum air temperature was 0⁰C or below, and 

the snow dummy simply used the ‘snowfall’ record from the relevant dataset. 

Unfortunately, records of snowfall in the Northwest region were unavailable for the 

chosen station, so records from another station, Hazelrigg, near Lancaster, improved 

the completeness of the data, although it was still more limited for that region than 

others, resulting in fewer days without missing data, and thus a smaller matching 

sample of speed tests as can be seen in Table 7.213. Finally, the definition of a 

heatwave varies by region and time of year, so a simplified heat dummy used the 

threshold for the Met Office heat-health watch: maximum daily temperatures of over 

30⁰C (2017c).  

                                                           
13 Column 2 in Table 7.2 indicates the number or sample size of speed tests that could be matched to the 

independent variable in each row below ‘Mean Speed (Kbps)’ spatially and temporally. The other columns 
describe the key statistics of each variable respectively. 
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Table 7.2: Descriptive statistics for model variables 

Variable Sample size Mean St. Dev. Min Max 

Mean Speed (Kbps) 2,556,025 16,432.98 17,734.98 513 102,397 

Annual Trend 2,556,025 3.116 1.524 1 5 

Day of the Week 2,556,025 4.021 1.408 2 6 

Distance to nearest 
Exchange (km) 

2,556,025 0.236 0.171 0 0.68 

Ratio Speed Tests to 
population 

2,556,025 0.074 0.162 0.007 1.689 

Ratio of population 
working in High-tech 
industries 

2,556,025 0.053 0.033 0.006 0.237 

Ratio of population with 
higher professional 
status 

2,556,025 0.231 0.072 0.042 0.582 

Average Commuting 
Distance (km) 

2,556,025 16.31 4.419 5.9 37.5 

More urban location 2,556,025 0.843 0.364 0 1 

Ratio of population who 
mainly work from home 

2,556,025 0.031 0.018 0.002 0.116 

Household net weekly 
income (£) 

2,556,025 514.665 112.205 230 990 

Rainy Day 2,551,210 0.249 0.432 0 1 

Windy Day 2,552,299 0.208 0.406 0 1 

Heavy Rain 2,551,210 0.022 0.146 0 1 

Storm 2,553,455 0.01 0.097 0 1 

Freezing Day 2,555,551 0.099 0.299 0 1 

Snowfall 2,272,718 0.03 0.171 0 1 

Hot Day 2,555,551 0.004 0.06 0 1 

The other Control Variables in (7.1) were chosen to account for how socio-

demographic and geographic characteristics influence demand for broadband 

services, including the ability and tendency to work from home regularly or 

occasionally, and thus generate some of the background demand or daily variability 

not due to weather. According to the literature reviewed in section 3.2, the 
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characteristics of those who telecommute, but are not home-based workers, include 

those holding professional or managerial positions, are often more educated and 

wealthier, have longer commutes when they do travel to their main place of work, and 

live in suburban/outer metropolitan neighbourhoods rather than fully rural areas (Ellen 

and Hempstead, 2002; Headicar and Stokes, 2016; Peters et al., 2004; Singh et al., 

2013; Walls et al., 2006). As in Chapter 6, variables to represent these characteristics 

were derived mainly from census data compiled into ‘neighbourhood statistics’ tables 

produced by the Office of National Statistics at MSOA level. These included the ratio 

of the MSOA population who work mainly at or from home, average commute distance, 

numbers of residents working in information, communication, professional, scientific, 

and technical industries or Standard Industrial Classifications J and M (ONS, 2014), 

and numbers of residents holding managerial, professional, and administrative 

positions or Standard Occupational Classifications 1 and 2, and sub-classifications 31, 

35, 41 and 72. The latter two were divided by the MSOA’s home population. Net weekly 

household income estimates were available for financial year 2013-14 (ONS, 2016a). 

The urban or rural character of an MSOA gives some indication of the supply available 

as well as demand for quality broadband services, as rural areas can still lag far behind 

in terms of adequate internet services (Philip et al., 2017). After some iterations of the 

developing model, a binary variable of the two most rural classifications versus the 

other four more urban classifications was included in the main model (ONS, 2016b). 

The inclusion of these Control Variables also addressed the assumption of multilevel 

models that the random coefficients should be normally distributed (Field et al., 2012). 

The individual supply variables, the Control Variables, and the annual trend and day 

of the week formed the base model of background variation. Each weather variable 
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was inserted individually onto this base model to test for any effects on broadband 

speeds. Then they were tested jointly, for although there are logical correlations 

between weather variables, e.g. Freezing Day and Snowfall, these are all under +/- 

0.3, a reasonably small effect (Field et al., 2012), and the changes in the coefficients 

for each when all weather variables are included in the estimation of (7.1) are of 

interest. Finally, sensitivity tests on subsets of data and interactions between the 

weather and the geographical variables were run to further explore the results. 

7.3 Exploratory Analysis 

Exploratory analysis prior to modelling demonstrated that days of severe weather 

and likely increased internet activity are visible in the mean working day speeds when 

compared with Met Office weather impact summaries (2012-2016a, 2012-2016b).  

 
Figure 7.3: Calendar plot of mean download in speeds (Kbps) for all working days 
(0800-1800) in 2012. A selection of impactful storm days are circled in blue. 
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Calendar plots such as those in Figures 7.1 and 7.3 suggested that modelling the 

relationship between weather and internet activity beyond spatially and temporally 

restricted case studies would provide insights of interest. Manual checks further 

compared storm and snow dates captured by the dummies to those dates with weather 

impacts as noted and summarised by the Met Office (2012-2016a; 2012-2016b). Many 

storm days were correctly picked up by the model and some others were captured by 

the Snow Day dummy, but a few impactful storms in certain regions were missed 

altogether, particularly thunderstorms, which may not be accompanied by high winds, 

whilst for some dates with storm winds and precipitation, the Met Office did not record 

a notable event or impacts (2012-2016a; 2012-2016b). This exploratory analysis 

highlights the temporal variation that might be attributed to the presence and timing of 

not only weather parameters, but also weather impacts, as well as other known and 

unknown influences on broadband activity. These influences include service upgrade 

promotions, different levels of internet activity on different days of the week, special 

events that generate weekday internet activity, or direct impacts on broadband 

infrastructure like power cuts or hardware failure, which could not be modelled due to 

lack of data. The weather dummies account for some seasonal effects, and the ‘month’ 

variable was likewise tested, but the upward trend was inconsistent at the monthly 

scale, and could not be compared to OfCom’s annual reports. The available data thus 

do not explain all temporal variation, which also appears not to be completely 

unidirectional, but by dividing the model into a 4 year training period (2012-2015) and 

one year forecast period (2016), Figure 7.4 offers further confidence that the proposed 

model would capture some major temporal trends despite the noise. 
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Figure 7.4: The average daily speeds calculated from the speed check data are 
graphed in red and blue, whilst the model forecast for 2016 are shown by the black 
line. 

Meanwhile, the model also adds in the geography of weather events over an 

extensive and intensive spatial scale. Therefore, to explore how well the Storm dummy 

captured major storms in the locations that suffered transport disruption, the dates and 

MSOAs of speed tests run when the Storm Dummy registered as ‘1’ were extracted 

and mapped in Figure 7.5 for the period of well-documented storms between 

December 2013 and February 2014. These had significant transport impacts 

(Chatterton et al., 2016), but minimal impacts on broadband infrastructure, as analysis 

conducted by OfCom indicated that only 1% of the incidents; breaches of security or 

reductions in availability, reported to them were attributed to severe weather (2014). 
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Figure 7.5: MSOAs with speed tests on ‘Storm’ dates as colour-coded during 
2013−14 Winter Storms. 

Figure 7.5 closely matches the known dates and impacts of that extreme winter’s 

storms, other than in the Southeast region. This region was affected by the February 

storms, but the Storm dummy does not register ‘1’ on these days. This may be because 

there was missing speed test data for the week 11-14 February 2014, which would 

have been when the Southeast felt the greatest impacts. Furthermore, the wind gusts, 

a key variable in setting the Storm dummy may not have been as strong in the 

Southeast, and flooding, which was substantial and impacted upon transport 

infrastructure, was not included in the dataset. Still, Figure 7.5 confirms that the Storm 

dummy successfully captures a selection of dates and places where changes in 

broadband speed due contention during storm conditions might be expected. The day 
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of ‘Storm Jude’, mentioned in the introduction, was manually excluded from the storm 

dummy variable as an outlier, since the Met Office noted the extreme impacts of that 

storm were not exclusive to transport infrastructure, but included extensive power 

outages across the country (2013). Later investigations revealed a record number of 

faults reported to BT (Lazarus, 2014), such that those who did still have power and an 

internet connection appear to have benefitted from faster download speeds.  

Despite the spatial granularity of individual speed tests, this is ‘volunteered 

geographic information’, so unsurprisingly, there are some MSOAs with no speed tests 

on a given date, and some with many tests on most days. However, the application of 

a random effects model addresses some of the concerns that might otherwise arise 

from analysing such a dataset, as these models better accommodate missing data and 

do not assume the independence of each observation (Field et al., 2012), i.e. that each 

observation comes from speed tests performed by different individuals or households. 

A variable to account for the number of Speed Tests per head of home population in 

each MSOA was added to the Control Variables in equation (7.1) in order to further 

moderate any sampling bias inherent in this crowd-sourced data. Furthermore, any 

bias resulting from the fact that tests in this dataset are more likely to be run “when 

there is other network activity ongoing” or speeds are lower than the customer expects 

(Riddlesden and Singleton, 2014, p. 26), may be countered by the likelihood that those 

who seek to test their broadband may be doing so because they are more ‘tech-savvy’ 

and / or have purchased higher speed packages that are not delivering the promised 

level of service.  
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7.4 Results 

As with the exploratory analysis, the case study t-tests supported the hypothesis 

that download speeds and the level of internet activity would be affected by extreme 

weather events. In a subset of 152 MSOAs centred on the Reading area, the mean is 

5,324 Kbps slower during Storm Doris than the average working day in the control 

period, with a significance of t(149.96) = 3.28, p = 0.001. Using the matching area and 

dates for the West Midlands case study, the mean is only 1,266 Kbps slower under 

storm conditions, but this is significant at t(4465.1) = 3.21, p = 0.001. However, as 

shown in Figure 7.6 and comparable to the road travel map in Figure 6.3, an obvious 

geographical pattern in this difference in broadband speeds is not apparent. 

Furthermore, there are many MSOAs with no speed check tests either during the 

control and / or storm periods, and therefore those neighbourhoods are ‘missing’ data 

in Figure 7.6. This is not surprising, as only 3,037 individual speed tests were recorded 

during the 10 storm days in the entire West Midlands study area, compared to the 

almost 8 million road trips that made up the matrices under storm conditions analysed 

in Chapter 6. Further modelling of such a dataset would neither be robust, nor likely to 

reveal any spatial patterns of online accessibility during the case study storms.  
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Figure 7.6: Difference in broadband speeds between control period and storm 
conditions. Darker pink shaded areas show those MSOAs with reduced broadband 
speeds under storm conditions. Paler areas had increased speeds, and grey 
indicates missing data. 

Therefore, as discussed in section 7.2, records of over 2.5 million download speed 

checks over 5 years from throughout England and Wales provided the dependent 

variable, whilst weather parameters replaced definitive localised knowledge of weather 

impacts. The results of the main linear mixed-effects model based on equation (7.1) 

with intercepts that are allowed to vary by MSOA are shown in Table 7.3.14  

                                                           
14 The model was estimated using the ‘nlme’ package for R 
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Table 7.3: Main Regression model results with weekday coefficients hidden. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Annual Trend 0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.262
***

0.263
***

0.262
***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005

Distance to Nearest 

Exchange
-0.017 0.040*** 0.041*** 0.040*** 0.041*** 0.040*** 0.040*** 0.046*** 0.040*** 0.047***

0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.011 0.012

Virgin Media compared 

to BT
0.655*** 0.649*** 0.649*** 0.648*** 0.649*** 0.648*** 0.649*** 0.651*** 0.649*** 0.651***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Other compared to BT -0.394
***

-0.396
***

-0.396
***

-0.396
***

-0.396
***

-0.396
***

-0.396
***

-0.389
***

-0.396
***

-0.389
***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002

Ratio of Speed Tests to 

population
-0.645

***
-0.644

***
-0.645

***
-0.644

***
-0.645

***
-0.643

***
-0.669

***
-0.644

***
-0.667

***

0.074 0.074 0.074 0.074 0.074 0.074 0.080 0.074 0.080

Ratio of pop working in 

High-tech industries
1.602*** 1.605*** 1.595*** 1.604*** 1.594*** 1.583*** 1.832*** 1.601*** 1.807***

0.174 0.174 0.174 0.174 0.174 0.174 0.188 0.174 0.188

Ratio of pop with higher 

professional status
-0.185

**
-0.185

**
-0.180

**
-0.185

**
-0.180

**
-0.176

**
-0.239

**
-0.184

**
-0.225

**

0.089 0.089 0.089 0.089 0.089 0.089 0.096 0.089 0.096

Average Commuting 

Distance (log)
-0.027* -0.027* -0.027* -0.027* -0.027* -0.027* -0.014 -0.027* -0.014

0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.014 0.015

More urban location 0.343*** 0.343*** 0.342*** 0.343*** 0.342*** 0.343*** 0.342*** 0.343*** 0.342***

0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.013

Ratio of pop with home 

as main workplace
-4.828*** -4.833*** -4.826*** -4.833*** -4.828*** -4.823*** -5.085*** -4.829*** -5.076***

0.291 0.291 0.291 0.291 0.291 0.291 0.315 0.291 0.315

Household net weekly 

income (log)
0.171*** 0.171*** 0.170*** 0.171*** 0.170*** 0.169*** 0.166*** 0.171*** 0.163***

0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022

Rainy Day 0.001 -0.0004

0.001 0.002

Windy Day 0.0004 -0.001

0.002 0.002

Heavy Rain 0.002 0.005

0.004 0.005

Storm -0.028*** -0.049***

0.006 0.008

Freezing Day -0.036
***

-0.030
***

0.002 0.002

Snowfall -0.057
***

-0.042
***

0.004 0.004

Hot Day 0.008 0.033
***

0.01 0.012

Constant 8.420*** 7.231*** 7.230*** 7.239*** 7.231*** 7.239*** 7.249*** 7.230*** 7.233*** 7.255***

0.005 0.112 0.112 0.112 0.112 0.112 0.112 0.122 0.112 0.122

Observations 2,556,025 2,556,025 2,551,210 2,552,299 2,551,210 2,553,455 2,555,551 2,272,718 2,555,551 2,267,476

Log Likelihood -3,636,473 -3,634,705 -3,628,047 -3,629,246 -3,628,047 -3,630,936 -3,633,861 -3,229,738 -3,634,009 -3,222,000

Akaike Inf. Crit. 7,272,969 7,269,446 7,256,131 7,258,530 7,256,131 7,261,911 7,267,759 6,459,514 7,268,055 6,444,051

Bayesian Inf. Crit. 7,273,109 7,269,676 7,256,373 7,258,773 7,256,374 7,262,153 7,268,002 6,459,754 7,268,298 6,444,367

Note: *
p<0.1; 

**
p<0.05; 

***
p<0.01

Dependent Variable: Download Test Speed (log)
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The annual improvement in broadband speeds captured by the ‘Annual Trend’ 

coefficient is intuitive, as the 26.3% average annual improvement that the coefficient 

represents is only slightly different from the average annual increases in 24-hour 

broadband speed of about 26.7% as reported by OfCom for the UK between 2013 and 

2016 – although admittedly in the first year of analysis from 2012 to 2013, 24-hour 

speeds rose much faster – see Table 7.1 (2016).  Distance from the nearest telephone 

exchange becomes highly significant and positive only when the Control Variables are 

included, which may be because this variable is a somewhat imprecise reflection of 

the connection distance due to irregularly shaped catchment areas. Alternatively, it 

may be because the distance to the street cabinet, not the Exchange, has a greater 

impact on line speed, particularly in rural areas. Meanwhile, speeds are naturally faster 

for cable connections than for BT or for other copper-line based services, but the 

slower speeds from ‘other’ providers may mask a wide range of service packages. 

Finally, people clearly do test their broadband more often when it is running slower 

than expected, as shown by the negative coefficient for tests per head of population.  

The signs of the coefficients for the MSOA-level Control Variables are as expected, 

and the mostly high levels of significance indicate their relevance to broadband 

speeds. Those neighbourhoods with more residents on higher incomes or who are 

more tech-savvy due to the industry in which they work are more likely to purchase 

faster broadband connections, and such connections are more reliably available in 

more urban locations. Conversely, the higher the proportion of home workers, and, 

minimally, those with more occupational autonomy to telecommute, the more demand 

for broadband and the slower the speeds on the network. All the temporal trend, speed 

test, and Control Variable coefficients are broadly consistent across the different 
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estimations of the model. The largest differences are found where the sample size 

used in the estimation is substantially smaller due to inclusion of the Snowfall dummy. 

Extreme weather conditions have small, but highly significant effects on broadband 

speeds. Days recording storm-force winds, ice and snow appear to lower broadband 

speeds by around 3-5% individually or jointly, which could represent noticeable 

reductions in the level of service, depending upon the applications in use and the 

speeds normally available over a particular connection. There are no significant effects 

on broadband speeds due to rain, perhaps because rainy days are so common in the 

UK that behaviour is unlikely to change in response, especially where the variable 

relates to amount, not intensity. The coefficients are also likely to interact, as one 

weather parameter can affect another, such as high temperatures making intense 

rainfall more likely, or the temporal variation might reflect behavioural responses to 

weather warnings and / or impacts that last multiple days or have a greater than daily 

time lag. Thus, although the effects are clearly not cumulative, the last estimation 

includes all weather variables together, and the negative influence of storm-force winds 

almost doubles to 5%. This suggests that the wind gust parameter has a stronger 

relationship with contention when controlling for heavy rain, snowfall, or a heatwave, 

which may be because there is more advance warning not to travel during major wind 

storms than at times of high winds during hot weather and heavy rain. The latter are 

more common in the afternoon or evening, when people are already out for the day, 

and the choice not to travel is less viable. Likewise, speeds increase on ‘Hot Days’ 

where the model controls for other weather parameters that might keep people from 

enjoying such days out of doors. Furthermore, summer heatwaves often occur when a 
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substantial proportion of the working population are on holiday and, with school traffic 

absent, transport infrastructure is less congested and internet usage is generally lower. 

The results in Table 7.3 provide some clear insights into the impact of weather on 

internet activity. However, it was deemed important to undertake sensitivity testing in 

order to reduce some of the statistical noise generated by a spatially and temporally 

heterogeneous dependent variable.  

7.5 Spatial Sensitivity Testing 

As mentioned in section 7.3 and shown in Figure 7.7, there is substantial variation 

in average speeds at MSOA level, with faster average speeds generally found in more 

urban areas. 
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Figure 7.7: Mean speeds (Kbps) by MSOA for 2012-2016 working days  

The main analysis discussed in section 7.4 addresses this spatial heterogeneity by 

applying a hierarchical, random effects model and including variables controlling for 

certain geographic and socio-economic characteristics. However, there are other 

methodologies, so a sensitivity test estimated the model by defining repeated 

observations for each MSOA by date as ‘panel data’ using the ‘within effects 

transformation’ applied to OLS regressions.15 This estimation produced similar results 

as shown in Table 7.4.  

                                                           
15 These regressions were estimated with the ‘plm’ package for R. 

under 13525 Kbps 

over 19162 to 21956 Kbps 

13525 to under 16631 Kbps  

16631 to 19161 Kbps 

over 21956 Kbps 
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Table 7.4: Model showing the ‘within effects transformation’ coefficients at the 
individual and regional scales. 

 

Next, an interaction term between the weather variables and the binary urban-rural 

dummy was added to the original model, as there are fewer transport options in rural 

areas if there is disruption or reduced road access. Indeed, the results in Table 7.5 

indicate that rain, snow, and freezing weather all have less impact on broadband 

speeds in urban areas than in the 652 MSOAs classified as dispersed rural 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Annual Trend 0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.263
***

0.262
***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005

Distance to 

Nearest Exchange
0.029

*
0.028

*
0.029

*
0.028

*
0.028

*
0.027

*
0.028

*
0.028

*

0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.016

Virgin Media 

compared to BT
0.650

***
0.649

***
0.650

***
0.649

***
0.649

***
0.652

***
0.649

***
0.652

***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Other compared 

to BT
-0.396

***
-0.396

***
-0.396

***
-0.396

***
-0.396

***
-0.390

***
-0.396

***
-0.389

***

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002

Rainy Day 0.001 -0.0004

0.001 0.002

Windy Day 0.00001 -0.001

0.002 0.002

Heavy Rain 0.002 0.005

0.004 0.005

Storm -0.028
***

-0.049
***

0.006 0.008

Freezing Day -0.037*** -0.031***

0.002 0.002

Snowfall -0.057*** -0.042***

0.004 0.004

Hot Day 0.008 0.032***

0.01 0.012

Observations 2,551,210 2,552,299 2,551,210 2,553,455 2,555,551 2,272,718 2,555,551 2,267,476

R2 0.2 0.2 0.2 0.2 0.2 0.196 0.2 0.197

Adjusted R
2 0.198 0.198 0.198 0.198 0.198 0.194 0.198 0.194

F Statistic
70,740*** 

(df = 9; 

2544000)

70,858*** 

(df = 9; 

2545089)

70,739*** 

(df = 9; 

2544000)

70,879*** 

(df = 9; 

2546245)

70,945*** 

(df = 9; 

2548341)

61,471*** 

(df = 9; 

2265508)

70,903*** 

(df = 9; 

2548341)

36,857*** 

(df = 15; 

2260260)

Note: *p<0.1; **p<0.05; ***p<0.01

Dependent Variable: Download Test Speed (log)
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settlements. One explanation for this relationship to winter weather might be the 

additional vulnerability of rural roads to snow and ice, due in part to their low priority 

for winter road maintenance. Thus, the negative effect of snowy weather on internet 

speeds is greater indicating more internet activity and a greater reliance on virtual 

accessibility in rural areas at such times. It is less obvious why internet activity in rural 

areas increases in wet weather but decreases in response to storm-level winds, 

although it is possible this correlation is associated not with daily travel, but with local, 

outdoor, rural activities, such as farming and tourism. Outdoor activities are often more 

difficult or less attractive in the rain, whilst storm-level winds may not be relevant if the 

activity is in a sheltered area or if impacts are more localised and thus affect a lower 

proportion of a dispersed population.  
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Table 7.5: Interaction of Weather Variables with MSOAs’ Urban or Rural character. 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Annual Trend 0.263*** 0.263*** 0.263*** 0.263*** 0.263*** 0.262*** 0.263***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004

Distance to Nearest Exchange 0.041*** 0.040*** 0.041*** 0.040*** 0.040*** 0.046*** 0.040***

0.011 0.011 0.011 0.011 0.011 0.012 0.011

Virgin Media compared to BT 0.649
***

0.648
***

0.649
***

0.648
***

0.649
***

0.651
***

0.649
***

0.002 0.002 0.002 0.002 0.002 0.002 0.002

Other compared to BT -0.396*** -0.396*** -0.396*** -0.396*** -0.396*** -0.389*** -0.396***

0.001 0.001 0.001 0.001 0.001 0.002 0.001

-0.645*** -0.645*** -0.645*** -0.644*** -0.643*** -0.669*** -0.645***

0.074 0.074 0.074 0.074 0.074 0.08 0.074

1.606
***

1.595
***

1.604
***

1.595
***

1.584
***

1.833
***

1.601
***

0.174 0.174 0.174 0.174 0.174 0.188 0.174

-0.186
**

-0.181
**

-0.185
**

-0.180
**

-0.176
**

-0.239
**

-0.184
**

0.089 0.089 0.089 0.089 0.089 0.096 0.089

-0.027
*

-0.027
*

-0.027
*

-0.027
*

-0.027
* -0.014 -0.027

*

0.014 0.014 0.014 0.014 0.014 0.015 0.014

More urban location 0.335
***

0.341
***

0.342
***

0.343
***

0.341
***

0.341
***

0.343
***

0.012 0.012 0.012 0.012 0.012 0.013 0.012

-4.826*** -4.825*** -4.832*** -4.829*** -4.823*** -5.087*** -4.829***

0.291 0.291 0.291 0.291 0.291 0.315 0.291

0.171*** 0.170*** 0.171*** 0.170*** 0.169*** 0.167*** 0.171***

0.021 0.021 0.021 0.021 0.021 0.022 0.021

Rainy Day -0.025
***

0.004

Rainy Day x More urban 0.031***

0.004

Windy Day -0.004

0.004

Windy Day x More urban 0.005

0.004

Heavy Rain -0.016

0.01

Heavy Rain x More urban 0.021*

0.011

Storm 0.004

0.017

Storm x More urban -0.037
**

0.019

Freezing Day -0.049***

0.005

Freezing Day x More urban 0.015
**

0.006

Snowfall -0.089
***

0.01

Snowfall x More urban 0.037***

0.011

Hot Day 0.025

0.03

Hot Day x More urban -0.019

0.032

Constant 7.237*** 7.239*** 7.231*** 7.239*** 7.250*** 7.230*** 7.232***

0.112 0.112 0.112 0.112 0.112 0.122 0.112

Observations 2,551,210 2,552,299 2,551,210 2,553,455 2,555,551 2,272,718 2,555,551

Log Likelihood -3,628,016 -3,629,246 -3,628,045 -3,630,934 -3,633,857 -3,229,732 -3,634,008

Akaike Inf. Crit. 7,256,072 7,258,531 7,256,130 7,261,909 7,267,755 6,459,505 7,268,057

Bayesian Inf. Crit. 7,256,327 7,258,786 7,256,385 7,262,164 7,268,010 6,459,757 7,268,312

Note: *p<0.1; **p<0.05; ***p<0.01

Dependent Variable: Download Test Speed (log)

Ratio of Speed Tests to 

population

Ratio of pop working in High-

tech industries

Average Commuting Distance 

(log) 

Household net weekly income 

(log) 

Ratio of pop with home as 

main workplace

Ratio of pop with higher 

professional status
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However, neither the binary urban-rural variable in the model, nor any of the other 

levels of urban-rural classification used by the ONS capture suburban areas of 

conurbations independently of those conurbations’ central cores. Yet these ‘suburban’ 

geographies and smaller urban areas are where the relationship between severe 

weather events and internet accessibility are likely to be most important, as they have 

neither rural economic activities and relatively slow speeds even under typical weather 

conditions, nor do they have the high densities of local employment options, other 

activities, and transport services of central cities. Therefore, residential population 

density by MSOA using the 2014 population estimates (ONS, 2017), was used to 

subset the model for further sensitivity analysis. According to Welch’s t-tests, the 

subset of MSOAs with a population density of between 1000 and 15000 residents per 

km had mean speeds on ‘Storm’ days only half a Mb/s less than the average for non-

stormy days, but was significant at p = 0.002, suggesting that the null hypothesis of no 

difference in means could be rejected (Field et al., 2012). Furthermore, as shown in 

Figure 7.8, this subset excluded those exceptional, central London neighbourhoods 

where the density of transport options, population, employment, and other 

opportunities is at a scale some orders of magnitude greater than the rest of the UK, 

making these areas unusually resilient. 
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Figure 7.8: The subset of MSOAs with between 1000 and 15000 resident population / 
km in 2014. 

The model results in Table 7.6 for this subset represent over half the total dataset 

at 1,434,642 observations. In these neighbourhoods the impact of storms on 

broadband speeds is a 4% decrease in speeds without controlling for other weather 

variables and 6.6% with controls. The effect of snowfall is also greater. Meanwhile, the 

distance to the nearest exchange becomes insignificant, and the annual trend is less 

prominent with the exclusion of rural areas. In partial confirmation of the suggestion 

above that rural responses to weather differ from more urban ones, the effect of home 
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workers on broadband speeds changes from significantly negative to significantly 

positive. This implies that those in more urban locations who work mainly at or from 

home can choose and are investing in higher speed services to support such work. 

Average commuting distance within each MSOA becomes positive and more 

significant, perhaps because this subset excludes outliers from rural villages with 

particularly long-distance commutes and slower home broadband, from more urban 

dwellers who usually commute. Overall, this sensitivity test offers additional evidence 

in support of the hypothesis put forward in this chapter, namely, that internet activity 

increases in adverse weather when people may prefer to stay home to avoid the risk 

of transport disruption or may be forced to stay home due to transport disruption. It 

further indicates that this effect is stronger in areas where people may be more likely 

and able to telecommute. 
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Table 7.6: Estimation of the subset of observations for MSOAs with a population 
density between 1000 and 15000 people per kilometre. The Urban / Rural 
classification is not included. 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Annual Trend 0.238
***

0.238
***

0.238
***

0.238
***

0.238
***

0.237
***

0.235
***

0.238
***

0.235
***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Distance to Nearest 

Exchange
0.018 0.018 0.017 0.018 0.018 0.018 0.017 0.018 0.018

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.016 0.017

Virgin Media compared 

to BT
0.536

***
0.536

***
0.536

***
0.536

***
0.536

***
0.536

***
0.538

***
0.536

***
0.538

***

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other compared to BT -0.546
***

-0.546
***

-0.546
***

-0.546
***

-0.546
***

-0.546
***

-0.541
***

-0.546
***

-0.541
***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Ratio of Speed Tests to 

population
-0.415

***
-0.414

***
-0.414

***
-0.414

***
-0.414

***
-0.413

***
-0.436

***
-0.415

***
-0.434

***

0.072 0.072 0.072 0.072 0.072 0.072 0.079 0.072 0.079

Ratio of pop working in 

High-tech industries
0.652*** 0.655*** 0.644*** 0.654*** 0.646*** 0.633*** 0.969*** 0.653*** 0.946***

0.193 0.193 0.193 0.193 0.193 0.193 0.214 0.193 0.214

Ratio of pop with higher 

professional status
-0.389

***
-0.389

***
-0.384

***
-0.389

***
-0.384

***
-0.380

***
-0.519

***
-0.389

***
-0.506

***

0.096 0.096 0.096 0.096 0.096 0.096 0.107 0.096 0.107

Average Commuting 

Distance (log)
0.062

***
0.063

***
0.062

***
0.063

***
0.062

***
0.062

***
0.077

***
0.062

***
0.077

***

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.016 0.017

Ratio of pop with home 

as main workplace
2.104

***
2.103

***
2.111

***
2.104

***
2.108

***
2.115

***
1.832

***
2.104

***
1.849

***

0.439 0.439 0.439 0.439 0.439 0.439 0.493 0.439 0.493

Household net weekly 

income (log)
0.052** 0.052** 0.050** 0.052** 0.050** 0.049** 0.069*** 0.052** 0.065***

0.022 0.022 0.022 0.022 0.022 0.022 0.025 0.022 0.025

Rainy Day 0.003 0.002

0.002 0.002

Windy Day -0.001 -0.005
*

0.002 0.002

Heavy Rain 0.006 0.009

0.006 0.006

Storm -0.039*** -0.066***

0.008 0.01

Freezing Day -0.037*** -0.029***

0.003 0.003

Snowfall -0.062*** -0.048***

0.005 0.005

Hot Day -0.006 0.018

0.013 0.015

Constant 8.239
***

8.237
***

8.250
***

8.238
***

8.248
***

8.259
***

8.111
***

8.239
***

8.137
***

0.121 0.121 0.121 0.121 0.121 0.121 0.136 0.121 0.136

Observations 1,434,642 1,431,499 1,432,712 1,431,499 1,433,407 1,434,470 1,246,216 1,434,470 1,243,644

Log Likelihood -2,004,639 -2,000,369 -2,001,845 -2,000,370 -2,002,875 -2,004,293 -1,741,277 -2,004,384 -1,737,522

Akaike Inf. Crit. 4,009,312 4,000,774 4,003,726 4,000,776 4,005,786 4,008,622 3,482,591 4,008,803 3,475,092

Bayesian Inf. Crit. 4,009,519 4,000,993 4,003,945 4,000,995 4,006,005 4,008,842 3,482,807 4,009,022 3,475,381

Note:

Dependent Variable: Download Test Speed (log)

*p<0.1; **p<0.05; ***p<0.01
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7.6 Temporal Sensitivity Testing 

The extent of known and unknown factors influencing temporal variation was 

discussed in section 7.3. This section explores these issues further. Figure 7.9 shows 

that whilst broadband speeds rose year on year, the trend within each year varied.  

 
Figure 7.9: Mean broadband download speeds (Kbps) by date and year for working 
days. 
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The line is broadly a similar shape for 2012 and 2013, fluctuates widely in 2014, 

shows a different curve in 2015 and is fairly flat in 2016. In particular, there is great 

inconsistency within the annual rising trend in broadband speeds in 2014, which 

included missing data during the storms and flooding of February 2014. Furthermore, 

the manual checks described in section 7.3 revealed that the Storm and Snow 

dummies picked up more days which were not matched by known impacts in 2015 

than in the other years of analysis. Mean speeds in 2015 also increased more steeply 

in the Autumn than the Spring, further masking any daily impact of increased internet 

activity during the four named Storms in November / December 2015. Therefore, a 

regression was run on a subset including only 2012, 2013, and 2016, in order to 

sensitivity test whether effects might be greater if other temporal variation is more 

muted. The results in Table 7.7 include a Storm coefficient indicating speed reductions 

of 10%. This gives weight to the possibility that the patterns of significant effects on 

broadband speeds that suggest increased internet activity in response to extreme 

weather parameters in Table 7.3, whilst demonstrating a clear relationship between 

weather and internet activity, may underestimate the effects of weather disruption.  
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Table 7.7: Estimation of the subset of observations for all working day dates in 2012, 
2013 and 2016. 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Annual Trend 0.261
***

0.260
***

0.260
***

0.260
***

0.260
***

0.260
***

0.260
***

0.260
***

0.260
***

0.260
***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005

Distance to Nearest 

Exchange
-0.018 0.050*** 0.051*** 0.051*** 0.051*** 0.050*** 0.051*** 0.056*** 0.051*** 0.056***

0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.014

Virgin Media compared 

to BT
0.614

***
0.606

***
0.606

***
0.606

***
0.606

***
0.606

***
0.606

***
0.609

***
0.606

***
0.609

***

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other compared to BT -0.390*** -0.392*** -0.391*** -0.392*** -0.391*** -0.392*** -0.391*** -0.385*** -0.392*** -0.385***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Ratio of Speed Tests to 

population
-0.828*** -0.827*** -0.828*** -0.827*** -0.828*** -0.828*** -0.842*** -0.828*** -0.840***

0.084 0.084 0.084 0.084 0.084 0.084 0.089 0.084 0.089

Ratio of pop working in 

High-tech industries
1.792*** 1.786*** 1.775*** 1.791*** 1.781*** 1.772*** 1.982*** 1.789*** 1.940***

0.197 0.197 0.197 0.197 0.197 0.197 0.21 0.197 0.21

Ratio of pop with higher 

professional status
-0.143 -0.138 -0.135 -0.14 -0.137 -0.132 -0.178* -0.141 -0.156

0.1 0.1 0.1 0.1 0.1 0.1 0.107 0.1 0.107

Average Commuting 

Distance (log)
-0.056

***
-0.056

***
-0.056

***
-0.056

***
-0.056

***
-0.056

***
-0.047

***
-0.056

***
-0.046

***

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.016 0.017

More urban location 0.339
***

0.339
***

0.339
***

0.339
***

0.339
***

0.338
***

0.339
***

0.338
***

0.339
***

0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.014

Ratio of pop with home 

as main workplace
-4.877*** -4.878*** -4.861*** -4.881*** -4.873*** -4.874*** -5.072*** -4.877*** -5.045***

0.328 0.329 0.328 0.329 0.328 0.329 0.351 0.328 0.351

Household net weekly 

income (log)
0.152

***
0.151

***
0.150

***
0.151

***
0.150

***
0.150

***
0.142

***
0.151

***
0.137

***

0.023 0.023 0.023 0.023 0.023 0.023 0.025 0.023 0.025

Rainy Day -0.005
***

-0.005
**

0.002 0.002

Windy Day -0.006*** -0.004*

0.002 0.002

Heavy Rain 0.002 0.006

0.005 0.005

Storm -0.096*** -0.114***

0.01 0.012

Freezing Day -0.033*** -0.028***

0.002 0.003

Snowfall -0.061
***

-0.046
***

0.005 0.005

Hot Day 0.016 0.040***

0.011 0.012

Constant 8.430*** 7.430*** 7.438*** 7.445*** 7.434*** 7.440*** 7.447*** 7.466*** 7.434*** 7.501***

0.005 0.127 0.127 0.127 0.127 0.127 0.127 0.137 0.127 0.137

Observations 1,636,521 1,636,521 1,633,420 1,634,816 1,633,420 1,635,407 1,636,047 1,474,781 1,636,047 1,472,447

Log Likelihood -2,299,975 -2,298,391 -2,294,135 -2,295,938 -2,294,139 -2,296,770 -2,297,596 -2,067,404 -2,297,687 -2,063,908

Akaike Inf. Crit. 4,599,973 4,596,818 4,588,308 4,591,914 4,588,316 4,593,578 4,595,230 4,134,846 4,595,412 4,127,866

Bayesian Inf. Crit. 4,600,108 4,597,039 4,588,542 4,592,148 4,588,550 4,593,812 4,595,464 4,135,078 4,595,646 4,128,171

Note:

Dependent Variable: Download Test Speed (log)

*p<0.1; **p<0.05; ***p<0.01
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7.7 Discussion and Conclusion 

This chapter argues that lower experienced internet speeds during the working day 

due to increased internet use and demand in areas of adverse weather conditions are 

an indication that people are choosing ‘not travelling’ as a viable, resilient alternative 

to avoid delay and disruption. The regression analysis supports this hypothesis with 

winter weather and storm-level winds showing significant, albeit small, negative effects 

on broadband speeds. Since weather impacts show more temporal variation than the 

weather parameters used in the model, it was difficult to choose thresholds that neither 

over-selected nor under-selected storm dates. However, the temporal sensitivity test 

demonstrates that the model may underestimate, rather than overestimate the 

relationship between weather and broadband speeds, as removing 2014 and 2015, 

when there were known divergences between weather parameters and weather 

impacts and unidentified inconsistencies within the trend of rising broadband speeds 

and service quality delivery resulted in larger coefficients. Furthermore, storms can 

take diverse forms and have unpredictable impacts, which may well be dependent not 

upon the weather parameter itself, but where and when it occurs. Impacts vary 

depending on the location, season, and the length of advance warning and preparation 

before the storm or snow – in other words, where and when adverse weather is more 

expected, preparation is likely to be better.  

The mixed effects models estimated in this chapter could also only imperfectly 

capture the geographic / socio-demographic constraints on internet use and quality of 

service, considering that the prevalence of tech-based employment, for example, might 

be more relevant at a larger spatial scale, or that there are local initiatives to improve 

broadband infrastructure in some rural areas, but not others. However, the spatial 
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sensitivity tests demonstrate the heterogeneity in response between rural, suburban 

and central urban areas. Unfortunately, none of the sensitivity tests address the 

question of what activities the change in demand for online access represents. The 

data is at the level of the household, not the individual, and there is no knowing how 

many of the household are staying home and who in the household is creating the 

increased demand. For example, children at home during school closures may be 

watching videos or playing games that require substantial broadband capacity, whilst 

any adults staying at home, even if they are undertaking work tasks online, might 

generate a fraction of the demand. On the other hand, a recent study of Internet traffic 

found significant positive correlations between work or economic activity and the 

volume of data being transmitted by time of day and day of week, and a negative 

correlation between data flows and commuting peak hours (Stubbings and Rowe, 

2019).  

Furthermore, although the data is not available to translate changes in working 

hours’ internet activity into a quantified change in the number of trips taken on the day 

or the level of commuting or telecommuting, the broadband speed checks did include 

upload speeds, which could be a better indication of telecommuting activities rather 

than online leisure activities. The correlation coefficient between upload and download 

speeds is r = 0.57, so some of the effects could be broadly similar, and upload speeds 

show less range and variation than download speeds. Each year’s range of speed 

checks and daily fluctuations fit within a scale of approximately 2 Mbit/s rather than 5 

Mbit/s, and total mean speeds usually fall below 6 Mbit/s, even in 2016. Still, the model 

for upload speeds does offer some additional insights that may be more closely 

correlated with telecommuting behaviour, as shown in Table 7.8. 
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Table 7.8: Estimation of the main regression model in equation (7.1) with upload 
speeds as the dependent variable. Note that there are fewer observations as 
additional outliers were excluded. 

 

The first coefficients of interest are those comparing Virgin and other Internet 

Service Providers to BT. Virgin is still likely to offer faster broadband speeds than BT, 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Annual Trend 0.328*** 0.328*** 0.328*** 0.328*** 0.328*** 0.328*** 0.328*** 0.326*** 0.328*** 0.326***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Distance to Nearest 

Exchange
-0.050

**
0.089

***
0.089

***
0.089

***
0.089

***
0.088

***
0.089

***
0.125

***
0.089

***
0.125

***

0.021 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.018 0.019

Virgin Media compared 

to BT
0.317*** 0.309*** 0.309*** 0.309*** 0.309*** 0.309*** 0.309*** 0.318*** 0.309*** 0.318***

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 -0.003

Other compared to BT -0.508*** -0.510*** -0.510*** -0.510*** -0.510*** -0.510*** -0.510*** -0.501*** -0.510*** -0.501***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Ratio of Speed Tests to 

population
-0.733*** -0.733*** -0.730*** -0.734*** -0.732*** -0.730*** -0.764*** -0.733*** -0.758***

0.088 0.088 0.088 0.088 0.088 0.088 0.091 0.088 0.091

Ratio of pop working in 

High-tech industries
-0.177 -0.184 -0.197 -0.172 -0.182 -0.201 0.077 -0.172 0.042

0.194 0.194 0.194 0.194 0.194 0.194 0.204 0.194 0.204

Ratio of pop with higher 

professional status
0.361

***
0.364

***
0.372

***
0.358

***
0.363

***
0.373

***
0.379

***
0.358

***
0.397

***

0.099 0.099 0.099 0.099 0.099 0.099 0.105 0.099 0.105

Average Commuting 

Distance (log)
-0.046

***
-0.046

***
-0.046

***
-0.046

***
-0.046

***
-0.046

***
-0.040

**
-0.046

***
-0.040

**

0.016 0.016 0.016 0.016 0.015 0.015 0.016 0.016 0.016

More urban location 0.286
***

0.287
***

0.286
***

0.286
***

0.286
***

0.287
***

0.283
***

0.286
***

0.283
***

0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.014

Ratio of pop with home 

as main workplace
-7.217*** -7.214*** -7.206*** -7.220*** -7.213*** -7.211*** -7.468*** -7.218*** -7.442***

0.325 0.325 0.325 0.325 0.325 0.325 0.342 0.325 0.342

Household net weekly 

income (log)
0.400

***
0.400

***
0.397

***
0.401

***
0.399

***
0.397

***
0.363

***
0.401

***
0.358

***

0.023 0.023 0.023 0.023 0.023 0.023 0.024 0.023 0.024

Rainy Day -0.011
***

-0.014
***

0.002 0.002

Windy Day -0.012*** -0.014***

0.002 0.002

Heavy Rain 0.024*** 0.020***

0.005 0.005

Storm -0.008 -0.009

0.008 0.009

Freezing Day -0.043*** -0.046***

0.003 0.003

Snowfall -0.049
***

-0.025
***

0.005 0.005

Hot Day -0.053*** -0.039***

0.013 0.014

Constant 6.513*** 4.029*** 4.033*** 4.049*** 4.022*** 4.033*** 4.052*** 4.224*** 4.026*** 4.264***

0.007 0.126 0.126 0.126 0.126 0.126 0.126 0.133 -0.126 0.133

Observations 2,502,849 2,502,849 2,498,154 2,499,162 2,498,154 2,500,307 2,502,379 2,226,216 2,502,379 2,221,061

Log Likelihood -4,016,174 -4,014,480 -4,006,933 -4,008,558 -4,006,941 -4,010,366 -4,013,654 -3,554,324 -4,013,788 -3,545,839

Akaike Inf. Crit. 8,032,364 8,028,991 8,013,897 8,017,148 8,013,914 8,020,764 8,027,339 7,108,680 8,027,609 7,091,722

Bayesian Inf. Crit. 8,032,466 8,029,182 8,014,101 8,017,352 8,014,117 8,020,968 8,027,543 7,108,882 8,027,813 7,092,000

Note:

Dependent Variable: Upload Test Speed (log)

*p<0.1; **p<0.05; ***p<0.01
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but the smaller coefficients suggest that there is less differential between Virgin and 

BT for upload speeds, whilst providers other than Virgin and BT are already offering 

slower speeds on average for download, and even slower than that for upload. This 

may reflect the marketing and monitoring within the industry that prioritises and 

emphasises download speeds. Within the MSOA-level Control Variables, the 

coefficients for proportion working in ICT and other high-tech industries become 

insignificant, which is a big switch, whilst the effect of more people with higher 

professional status switches sign and is much greater, as is the effect of higher 

incomes. Although there is some overlap between industry and occupation, these 

correlations suggest that download speeds are more important than upload speeds to 

the tech-savvy, whilst internet service packages which include quality upload speeds 

are more important for those in more senior positions with higher incomes. The latter 

may be due to a need for more access to applications like video-conferencing when 

they do telecommute, as meetings may make up a larger proportion of the occupation 

of those with more managerial or client / customer service responsibilities. Finally, the 

hypothesis that telecommuting has a greater impact on upload speeds than download 

speeds is supported by the larger coefficients in Table 7.8 than in Table 7.3 for the 

proportion of home-workers, and although not shown in the tables, the effects of  the 

days of the week, when different proportions of people may telecommute, e.g. on a 

Friday compared to a Monday, is also greater for upload than for download speeds. 

The coefficients for the various weather parameters are more difficult to interpret. 

‘Light’ rain and heavy rain show opposite effects, which are small, but significant, whilst 

there is no significant correlation between broadband speeds and the Storm dummy, 

but Hot Days show a significant negative relationship, even greater than Snowfall. One 
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possibility is that upload speeds are more likely to reflect regular telecommuting by 

professionals, no matter the weather. Therefore, moderate adverse weather could be 

expected to have a small but significant negative effect on upload speeds, as regular 

telecommuters and home workers may interact more online as opposed to other offline 

or outdoor tasks if their normal days out of the office are wet and windy. Conversely, 

changes in upload speed due to telecommuting that occurs specifically in reaction to 

disruption, e.g. on days captured by the Storm dummy, may be masked by the 

relationship between upload and download speeds, where the effect on the latter is 

perhaps more attributable to internet use by others in the household or a combined 

effect and download activity consumes more bandwidth. This may also explain the 

weakening of the correlation between Snowfall and slower upload speeds in the final 

estimation including all weather parameters. Still another possible explanation relates 

to whether those weather parameters are linked to a proactive policy to telecommute 

for those who already regularly telecommute. Such a policy is more common in 

response to winter weather parameters, which do show significant negative 

coefficients. 

In conclusion, the quantification of online work activities during weather disruption 

remains uncertain, but this chapter demonstrates that broadband speed variation 

during working hours can provide insights into patterns of internet activity and resilient 

accessibility. It does this at a level of temporal granularity and geographical scale such 

that a small, but significant response to events like storms and snowfall is detected, 

highlighting the ability of internet access to potentially replace travel during severe 

weather.  
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8. TELECOMMUTING AND OTHER TRIPS16 

A key concern of policy makers when planning for storms, snow and other 

emergencies that will cause transport delay and disruption is the loss of productivity. 

The internet and telecommuting have the potential to provide robust accessibility 

options to work activities during extreme weather events, but the implications of this 

potential require further analysis of current trends towards online accessibility and 

telecommuting, and their interaction with travel behaviour. The decline in direct 

commuting trips in England over the last two decades has been partially attributed to 

increased telecommuting, although other impactful trends include increased trip 

chaining, more self-employment, contract and part-time working, and jobs where there 

is no fixed workplace (Le Vine et al., 2017). Of these trends, the additional flexibility 

telecommuting offers working adults in terms of time, location, and travel, as discussed 

in section 3.2 has great potential to increase resilience. However, as section 3.2 briefly 

reviews, the flexibility of telecommuting could either support sustainable travel 

behaviours or could result in more travel, more sprawl, and less resilient places. Which 

result occurs depends upon a more comprehensive analysis of the travel behaviour of 

known telecommuters, which is the aim of this chapter. When people choose to 

telecommute despite the presence of an external workplace or places, they are 

reducing the number of commute journeys they need to make, which in turn affects the 

number, distance, and environmental impact of both the remaining commuting 

journeys and the total trips taken by the individual, household, or local population 

(Choo et al., 2005; Gubins et al., 2017; Kim, 2017; Zhu, 2013). Research in China and 

                                                           
16 The majority of this chapter is under review following submission as: Budnitz, H., Tranos, E., Chapman, L. 
‘Telecommuting and other trips’, Journal of Transport Geography. 
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the United States concluded that telecommuters tend to make more trips for other 

purposes and that the demand for non-work activities may influence their choice to 

telecommute in the first place (Asgari and Jin, 2017; Loo and Wang, 2018; van Wee 

et al., 2013). 

The empirical analysis in this chapter builds on such literature by exploring the 

behavioural variation in out-of-home activity participation in England, by measuring and 

modelling the frequency of trips for different purposes by those who self-identify as 

telecommuters, excluding those whose workplace is home. By considering trip budgets 

rather than ‘travel time budgets’ (Mokhtarian and Chen, 2004), the analysis reviews 

how online work activities change the balance of external activity participation. 

Previous activity-based studies tend to measure only one or two journey purposes or 

categorise out-of-home and online activities into ‘mandatory’, ‘maintenance’, and 

‘discretionary’ (Asgari and Jin, 2017). This methodology may enable an understanding 

of behavioural patterns, but offers little insight into the level of travel demand for 

different purposes, and thus the implications for accessibility and sustainability. 

Therefore, this study reviews 11 separate journey purposes. Purpose is considered 

independently of distance or mode, because the aim of the research is how planners 

might increase the potential for telecommuters and others with flexible working 

arrangements to choose sustainable travel patterns, rather than assess whether they 

are already sustainable.  

The data source employed here is the National Travel Survey (NTS), which includes 

both a week’s travel diary with records of all trips taken for different purposes during 

that week, plus an interview component for the same participants that includes a 

question on how frequently individuals work from home. The research aims to 
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demonstrate how those who work from home at least once a week are different from 

other working adults in how they balance their demand for both travel and activity 

participation. This difference is explored through summary and statistical analysis, with 

the latter used as a tool to highlight the probability that a participant’s status as a 

frequent telecommuter is more or less relevant to the variation in travel patterns than 

other basic socio-economic and demographic characteristics. Insights into this 

difference can better inform policies on the integration of land use, transport and online 

accessibility, which in turn are key determinants of the distance and impact of travel 

on sustainability and resilience. 

8.1 Telecommuting in Context 

In transport research, telecommuting tends to refer to the direct replacement of 

commute journeys with remote participation, usually using ICT; and investigation has 

focused on the potential of telecommuting to reduce vehicle miles and impacts in order 

to contribute to the sustainable transport agenda (Cairns et al., 2004; Choo et al., 2005; 

White et al., 2007). And yet, a number of studies show this assumption is flawed. 

Telecommuters tend to have longer commute distances and durations on the days 

they do commute, and telecommuting households have longer total one-way commute 

distances (de Vos et al., 2018; Peters et al., 2004; Singh et al., 2013; Zhu, 2013). 

Furthermore, telecommuters make more business and non-work trips and fewer high-

efficiency linked trips, raising concerns that increased online access may have a 

neutral or unsustainable impact on total trips and distance travelled, particularly if 

telecommuters tend to live in more suburban, perhaps car-dependent areas (de Abreu 

e Silva and Melo, 2018; Gubins et al., 2017; Kim, 2017; Wang and Law, 2007).  
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Whilst there is some evidence that telecommuters are concentrated in suburban 

areas (Ellen and Hempstead, 2002), given the availability of other modes of transport, 

these commuters are not necessarily car-dependent. For example, since frequent 

telecommuters, who make up 8% of the working population in England, are more likely 

than non-telecommuters to travel by heavy rail when they do commute as shown in 

Figure 8.1, then some of those travelling longer distances may be doing so sustainably. 

It may be that any link between telecommuting and rail commuting is more related to 

the socio-economic characteristics telecommuters and rail commuters share, but it is 

still notable that working from home and commuting by rail are the only two ‘modes’ of 

accessing work which are increasing in England outside London, whilst ‘multi-modality’ 

more generally appears to be decreasing (Headicar and Stokes, 2016; Heinen and 

Mattioli, 2017; Le Vine et al., 2017). Therefore, the possibility that the two complement 

each other suggests that telecommuting and living further from the workplace does not 

necessarily have to be an unsustainable trend. 

 

Figure 8.1: Main mode of travel to work for frequent telecommuters and non-
telecommuters.17 

                                                           
17 Data Source: Department for Transport, 2017b. Own calculation. 
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Furthermore, accessibility is as much a product of the density and distribution of 

work and other opportunities, as it is of the transport networks or absolute measures 

of distance (Noulas et al., 2012). If we move on from the sustainability of ‘excess 

commuting’ or commuting further than the optimum as derived from utility-based 

accessibility models, the sustainability of non-work journeys becomes a key policy 

implication (Ma and Banister, 2006). Indeed, both long commutes and the growing 

importance of non-work travel relative to commuting may affect not only the propensity 

to telecommute, but also the search for a residential location that better balances travel 

requirements with different lifestyles, land uses, or attitudes about travel (Aditjandra et 

al., 2011; Hu and He, 2016; Melia et al., 2018). Modelling such behavioural feedback 

and interaction is complex, and the measures of accessibility and choice are often 

limited by the data available (Lavieri et al., 2018; van Wee et al., 2013). Still, there are 

studies that indicate not only that telecommuters make more non-work trips, but also 

that those living in areas with greater densities of local, non-work destinations or by 

commercial / retail centres, are more likely to telecommute (Andreev et al., 2010; Loo 

and Wang, 2018; Singh et al., 2013). Therefore, understanding the demand for work 

flexibility and access to amenities could enable a better land-use planning response to 

people’s needs (Banister, 2008; Kwan et al., 2007).  

Questions around flexibility and access apply to both people whose work and 

lifestyles are already flexible and fragmented in time and/or space, and also those who 

aspire to work from home one to two days per week, such as women and part-time 

workers who may have additional care-giving responsibilities (Headicar and Stokes, 

2016; Lavieri et al., 2018; Singh et al., 2013). Other trends can also have an influence. 

For example, trip chaining is associated with travelling further, often because it 
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accompanies longer-distance commuting trips, yet where people live in high density 

areas, trip-chaining and complex ‘tours’ are likely to involve travelling shorter distances 

(Chen and Akar, 2017). Thus, whilst this chapter argues for the importance of non-

work trips and accessibility for telecommuters, other trends may undermine or reinforce 

the potential for places which enable more sustainable, healthy, and resilient access 

to non-work activities. 

8.2 Materials and Methods 

The main data source used in this chapter is the National Travel Survey: 2002-2016 

(NTS), administered annually to approximately 16,000 individuals in 7,000 households 

selected through stratified, clustered, random sampling in order “to monitor long-term 

changes in personal travel” (Department for Transport, 2017b, Data Extract User 

Guide, 1995-2016: p5). Although the survey has a history which dates back over 50 

years, there are regularly minor changes to the questionnaire, and occasionally more 

major reviews and alterations to data collection. Since 2013, the survey has only 

sampled households in England, so data from the other British nations from earlier 

surveys was excluded from this analysis. In 2016, there was a major change to the 

recording of short walks in the travel diary, defined as those under one mile, from 

collecting the data only on the last day of the travel diary to only on the first day, so 

rather than lose an entire year of data, all ‘short walk’ trips are excluded from the main 

analysis. Finally, as this chapter is interested in the travel patterns of telecommuters, 

of most relevance are the questionnaire changes in 2009 to who was asked about 

frequency of working from home, namely all participants of 16 years or over in 

employment, rather than only those who responded to binary questions about whether 

they did work from home in the previous week, or if they didn’t, could work from home 
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(Department for Transport, 2017b). As a result, almost all working participants 

answered the question from 2009 onwards, even if they never telecommute. Pre-2009, 

a follow-up question recording which days someone had telecommuted in the previous 

week was used to calculate the frequency of telecommuting days per year by different 

groups (Le Vine et al., 2017). In comparison, this chapter uses the complete data from 

2009 to 2016 and the question directed at all employed adults to compare the non-

work travel of individuals who self-identify as working from home at least once a week 

to that of those who say they telecommute either more occasionally or never. 

The questionnaire or interview portion of the survey is accompanied by a week-long 

travel diary of trips. As this chapter is interested in whether the frequency of 

participation in activities other than work varies according to different working patterns, 

the analysis aims to measure the effect of individual and household characteristics 

from the interview, particularly regular telecommuting, on the number of trips recorded 

in the diary categorised by journey purpose. Other household and individual level 

characteristics are selected based upon the literature review of the socio-economic-

demographic and geographic factors that most influence not just telecommuting 

patterns, as applied in Chapter 7, but travel and access patterns more generally, 

including the choice to telecommute (Clark et al., 2016; Hincks et al., 2018; Lovelace 

et al., 2014). These include: the presence of dependent children in the household, 

whether the household is within the top income quintile, whether the individual is full-

time not part-time, an employee not self-employed, and usually works in the same 

place on at least two consecutive days a week not different places. For the purpose of 

controlling for the sustainability of travel patterns, variables were included to account 

for the presence of one or more motorised vehicles per adult in the household and 
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whether the individual identifies the car as their usual mode of commuting, either as 

driver or passenger. To control for geography and land use, we include a binary 

variable indicating urban or rural location. The above characteristics are weighted 

according to the NTS guidance to control for non-response bias, addressing, for 

example, those who did not complete the travel diary, whilst the weighting for trip 

numbers additionally controls for drop-off in response over the course of the diary 

week, which varies by journey purpose (Department for Transport, 2017b).  

The survey breaks trips down into either eight or 23 different purposes, and as trip 

numbers for some of the latter categories are very small, this study uses mainly the 

eight broad trip types, but divides ‘shopping’ into food and non-food, and ‘leisure’ into 

recreational activities such as sport and entertainment, visiting in residential areas, and 

holidays / days out. These divisions capture where different journey purposes involve 

different land uses, are likely to be influenced differently by socio-economic 

characteristics, and manifest different travel behaviours. It should be noted that the 

final category of the broader trip types is ‘other including just walk’, and mainly consists 

of ‘just walk’ trips where walking or other forms of movement without a destination are 

therefore activities in and of themselves, occur on the public highway, and where the 

distance is over 1 mile. In other words, the short walk trips are not double-counted, nor 

is there any record in the NTS of walking, jogging, cycling, etc in a park or along public 

rights of way. The result is a single, dependent variable for journey purpose that is 

categorical and choice-based, with 11 binary options. Therefore, a multinomial logit 

model (8.1) is estimated in order to provide insight into which influences affect the 

probability of a person recording different journey purposes for their trips, and 

specifically additional non-work trips. Furthermore, the model estimates whether an 
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individual being a self-declared telecommuter has a greater or lesser effect than the 

other socio-economic-demographic and geographic influences.  

ln(Prt ≠ Commute) =  𝛼 +  𝛽 1Telecommuter + 𝛽 2Household + 𝛽3Individual + 𝜀  (8.1) 

Such models have been used in transport studies before, usually with modal choice 

as the non-ordinal, categorical, dependent variable (Saneinejad et al., 2012; Zhou, 

2012), but in this case, Prt is the probability that a given trip is made for one of ten 

journey purposes rather than the reference or base journey purpose choice of 

commuting in equation (8.1). The model coefficients are the log odds of the stated 

choice to telecommute regularly (𝛽 1), and of other household (𝛽 2) and individual (𝛽 3) 

level characteristics making it more or less likely that each trip taken within the week 

will be to access one of the 10 activities other than the usual place of work. A chi-

square test of the log-likelihoods of the model with the single explanatory variable for 

telecommuting, and for the complete model, both show a significant difference from 

the null model, and the model fit further improved with the addition of the other relevant 

variables. 

8.3 Results: The Odds of Other Travel 

The eight-year dataset analysed here includes a total of 958,167 trips made by 

54,048 working individuals from 32,940 households once those who were not relevant 

to the analysis were excluded, e.g. due to not being of working age, being unemployed, 

identifying ‘home’ as their usual workplace location. Telecommuters, or those who 

work from home at least once a week make up 8% of the total. Table 8.1 shows the 

percentage of telecommuters that can be characterised by each binary variable, and 

the percentage of those who either never telecommute or telecommute less frequently 

with the same characteristics.  
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Table 8.1: Percentage of Sample for each Explanatory Variable 

Variable Telecommuters Non-Telecommuters 

Full Time not Part Time 78% 76% 

Employee not Self-Employed 70% 91% 

Have Regular Workplace 58% 86% 

Have Degree 56% 29% 

Male not Female 58% 53% 

Over 40 64% 52% 

Car to work 67% 67% 

Urban not Rural 76% 83% 

Have Children 39% 36% 

Have at least 1 Car per Adult in household 94% 97% 

Income Top Quintile 48% 26% 

Considering the large sample size, it is not surprising that any correlation between 

being a telecommuter and the independent variables is 0.15 or less, but there are 

differences in the characteristics of telecommuters and non-telecommuters. As Table 

8.1 shows, more frequent telecommuters are older, wealthier and better educated than 

non-telecommuters, all of which characteristics fit with the results of other studies, 

which also indicate more telecommuting among workers with professional and 

managerial roles (de Abreu e Silva and Melo, 2018; Gubins et al., 2017; Singh et al., 

2013). More men than women, more individuals with dependent children in the house, 

and a higher percentage of those who work full-time telecommute, although these 

differences are not as large. It is interesting that, after rounding, the same proportion 

of telecommuters and non-telecommuters say their usual mode of commuting is by car 

and that a slightly lower percentage of telecommuters live in households with at least 

1 car per adult, despite a higher proportion living in ‘rural’ areas. This could be an 

indication, albeit a small one, that telecommuting practices can reduce the car access 
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and dependency requirements of a household, and perhaps opens the door to a more 

sustainable lifestyle, which may even be a reason why some choose to telecommute.  

Certainly, Table 8.1 shows that compared to those who do not telecommute 

regularly, more telecommuters are self-employed and / or do not have a regular place 

of work, which are two key characteristics that will also affect how their journey 

purposes are recorded. In particular, having multiple workplaces or no regular 

workplace can change the journey purpose recorded from ‘commute’ to ‘business’. 

Indeed, all work journeys by those who never go to an identified usual workplace are 

counted as ‘business’ trips, and for self-employed people there might be additional 

ambiguity between ‘commute’, ‘business’, and ‘personal business’ journey purposes. 

Table 8.2 shows how differences in the journey patterns by purpose for telecommuters 

and non-telecommuters remain, even where those with overlapping flexibilities such 

as no regular place of work or self-employment are removed from the total. 
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Table 8.2: Journey purposes by total number of trips for non-telecommuters, 
telecommuters,  telecommuters with a regular, external workplace, and 
telecommuters who are employees with a regular workplace 

 
Non-

Telecommuters 
Telecommuters 

Telecommuters, 
regular 

workplace 

Employee, 
telecommute, 

regular 
workplace 

Commute 33% 17% 23% 24% 

Business 6% 13% 8% 7% 

Escort 
Education 

4% 6% 6% 6% 

Other 
Escort 

8% 11% 11% 11% 

Food 
Shopping 

8% 8% 8% 8% 

Other 
Shopping 

8% 9% 9% 8% 

Errands 8% 9% 9% 9% 

Leisure 
Trips 

10% 13% 12% 12% 

Visiting 9% 7% 7% 7% 

Holidays 4% 5% 5% 5% 

Other (just 
walk) 

2% 2% 2% 2% 

Table 8.2 demonstrates that a greater share of telecommuters’ trips are for other 

purposes. Telecommuters are also making more trips for other purposes in terms of 

absolute numbers. This is explored graphically in Figure 8.2. Regular telecommuters 

take about half as many commute trips per person in the diary week as those who 

telecommute less than once a week or not at all, but make almost 1.4 more ‘business’ 

trips from work or for other work purposes, although these do include all the work trips 

of those with no usual place of work. Telecommuters also record 0.6 more escort trips, 

0.2 more errands or ‘personal business’ trips, and 0.4 more journeys to places for 

leisure and recreation per person per week than non-telecommuters. Yet there is little 
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difference in shopping trips, both for food and other goods. Since, in total, 

telecommuters make an average of 19 trips per person during the diary week, 

compared to 19.9 trips per non-telecommuter, this analysis suggests that working 

adults have a similar trip-making ‘budget’ whether they telecommute or not, but 

telecommuting allows for substantial shifts in the purpose of those journeys. 

 

Figure 8.2: Trips per person in the diary week by journey purpose and telecommuting 
status. 

The multinomial logit model supports this conclusion, as Table 8.3 shows that being 

a frequent telecommuter increases the likelihood of making more trips for non-

commuting purposes and does so significantly and at a scale greater than most of the 

other socio-demographic characteristics across the 10 categories of non-commute 

journey purpose assessed. The coefficients are log odds, which can be difficult to 

understand intuitively, so it is useful to transform them using the expression eβ – 1 * 

100 to obtain the percentage change in the odds that a switch of status in the binary 

variable, for example, from a non-telecommuter to a telecommuter, will result in an 

additional non-commuting trip. We use the term ‘additional’ here, as the intercepts are 
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negative, meaning that in the sample as a whole, if all the independent variables are 

held at 0, it is more likely that a given trip will be for commuting, which remains the 

most common journey purpose in a usual week for most working adults. It should also 

be noted that the transformation of negative log odds result in smaller percentage 

figures. 

Table 8.3: Results from the multinomial logit model for the influence of 2009-2016 
NTS individual and household characteristics on the week’s travel diary recorded trip 
purposes. The coefficients in bold are those discussed in subsequent paragraphs 
with similar / greater effect levels as telecommuting. 

 

Business
Escort 

Education

Other 

Escort

Food 

Shopping
Shopping Errands Leisure Visiting Holidays Other

Telecommute 

at least weekly
0.696*** 0.756*** 0.620*** 0.516*** 0.500*** 0.597*** 0.593*** 0.439*** 0.657*** 0.639***

0.014 0.018 0.014 0.015 0.015 0.015 0.013 0.016 0.018 0.025

Full Time not 

Part Time
-0.042*** -1.322 *** -0.589 *** -0.491*** -0.501*** -0.517*** -0.497*** -0.492*** -0.542*** -0.499***

0.012 0.011 0.009 0.009 0.009 0.009 0.008 0.009 0.012 0.017

Employee not 

Self-Employed
-0.102*** -0.307*** -0.073*** 0.029** 0.043*** -0.159*** -0.001 0.063*** -0.038*** 0.125***

0.012 0.017 0.013 0.013 0.013 0.013 0.012 0.014 0.017 0.024

Have Regular 

Workplace
-1.845 *** -0.542*** -0.562*** -0.493*** -0.522*** -0.401*** -0.607*** -0.540*** -0.588*** -0.659***

0.011 0.015 0.011 0.012 0.012 0.012 0.01 0.012 0.015 0.02

Have Degree 0.471 *** 0.047*** 0.163*** 0.069*** 0.107*** 0.234*** 0.296*** 0.008 0.310*** 0.061***

0.009 0.011 0.008 0.008 0.008 0.008 0.007 0.008 0.011 0.016

Male not 

Female
-0.061

***
-0.393

***
-0.227

***
-0.331

***
-0.291

***
-0.227

*** -0.008 -0.282
***

-0.065
***

-0.198
***

0.009 0.011 0.008 0.008 0.008 0.008 0.007 0.007 0.011 0.015

Over 40 0.261
***

-0.127
***

0.249
***

0.264
***

0.215
***

0.187
***

-0.097
***

-0.243
***

0.179
***

0.351
***

0.009 0.01 0.008 0.008 0.008 0.008 0.007 0.008 0.011 0.015

Car to work 0.447 *** 0.342*** 0.658 *** 0.274*** 0.239*** 0.375 *** 0.144*** 0.313*** 0.218*** 0.052***

0.01 0.011 0.009 0.008 0.008 0.009 0.007 0.008 0.011 0.015

Urban not Rural -0.086
*** 0.019 0.024

**
0.056

***
0.046

***
-0.057

***
0.020

**
0.110

***
-0.222

***
-0.237

***

0.011 0.013 0.009 0.01 0.01 0.01 0.009 0.01 0.012 0.017

Have Children 0.034*** 1.823 *** 0.927 *** 0.208*** 0.166*** 0.277*** 0.013* -0.060*** 0.105*** 0.124***

0.009 0.012 0.007 0.008 0.008 0.008 0.007 0.008 0.011 0.015

Cars Available 0.190*** -0.151*** -0.013 0.209*** 0.147*** 0.072*** 0.211*** 0.308*** 0.042** 0.256***

0.017 0.021 0.015 0.016 0.016 0.016 0.015 0.017 0.021 0.031

Income Top 

Quintile
0.185

***
-0.124

***
0.043

***
0.051

***
0.089

***
0.130

***
0.249

***
0.018

**
0.219

***
0.230

***

0.01 0.013 0.009 0.009 0.009 0.009 0.008 0.009 0.011 0.016

Constant -0.877*** -1.184*** -1.267*** -1.039*** -0.906*** -0.940*** -0.615*** -0.801*** -1.340*** -2.197***

0.018 0.021 0.015 0.015 0.016 0.016 0.014 0.016 0.022 0.029

Note: *p<0.1; **p<0.05; ***p<0.01
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Once transformed, being a telecommuter makes it 55-115% more likely that a given 

trip will be for a non-commuting purpose, and the wide range reflects the variation 

between probabilities for particular journey purposes from visiting friends and family to 

escorting children to school. The bold, italicised cells in Table 8.3 show which other 

variables change the odds of making or not making certain trips at a rate similar to or 

greater than the influence of regular telecommuting, as transformed and highlighted in 

this and the following paragraphs. For example, after transformation, someone who 

self-identifies as a telecommuter is 101% more likely to record a ‘business’ trip rather 

than a commuting trip compared to a non-telecommuter, whilst someone who has a 

regular workplace is 84% less likely to record a business trip. The large effect for the 

latter is unsurprising as the survey categorises all work-related trips for those who do 

not have a regular place of work as ‘business’ rather than ‘commuting’, including trips 

to visit clients and customers. Since, as shown in Table 8.1, 42% of telecommuters do 

not have a regular workplace, a large proportion of the effect could be due to this 

segment of telecommuters. Many of these may also be self-employed. However, a 

sensitivity test was estimated for only employees with a regular workplace, whether 

they telecommute once a week or not, and as shown in Table 8.4 the telecommuters 

in this group were still 88% more likely to record a business trip.  
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Table 8.4: Results from the multinomial logit model for the influence of 2009-2016 
NTS individual and household characteristics on the week’s travel diary recorded trip 
purposes, with only telecommuters (and non-telecommuters) who are employed and 
have a regular workplace included.  

 

Having a degree and normally commuting by car also make it over 55% more likely 

that an individual will take a business trip, probabilities that are maintained even once 

those without a regular place of work and the self-employed are excluded. The former 

might relate to the types of jobs that those with degrees have, that require business 

travel, and the latter may suggest a reverse causal relationship – in other words those 

that need to travel for business during the working day or on the way to or from work 

are also more likely to commute by car so that the car is available for these other linked 

trips. Indeed, a similar connection might be drawn from the odds that those who 

Business
Escort 

Education

Other 

Escort

Food 

Shopping
Shopping Errands Leisure Visiting Holidays Other

Telecommute 

at least weekly
0.632

***
0.894

***
0.569

***
0.343

***
0.254

***
0.323

***
0.305

***
0.559

***
0.559

***
0.630

***

-0.023 -0.024 -0.019 -0.021 -0.021 -0.021 -0.018 -0.019 -0.024 -0.032

Full Time not 

Part Time
-0.274*** -1.490*** -0.638*** -0.552*** -0.538*** -0.606*** -0.575*** -0.581*** -0.746*** -0.733***

-0.016 -0.013 -0.01 -0.01 -0.01 -0.01 -0.009 -0.01 -0.013 -0.018

Have Degree 0.552*** -0.176*** 0.118*** 0.122*** 0.126*** 0.251*** 0.268*** 0.009 0.222*** 0.339***

-0.012 -0.013 -0.009 -0.009 -0.009 -0.009 -0.008 -0.009 -0.012 -0.017

Male not 

Female
0.024

**
-0.245

***
-0.179

***
-0.330

***
-0.300

***
-0.227

***
-0.020

***
-0.276

***
-0.069

***
-0.141

***

-0.012 -0.013 -0.009 -0.008 -0.008 -0.009 -0.008 -0.008 -0.012 -0.016

Over 40 0.265
***

-0.201
***

0.260
***

0.269
***

0.204
***

0.121
***

-0.089
***

-0.252
***

0.251
***

0.527
***

-0.012 -0.012 -0.008 -0.008 -0.008 -0.009 -0.008 -0.009 -0.012 -0.017

Car to work 0.420
***

0.324
***

0.627
***

0.262
***

0.211
***

0.420
***

0.174
***

0.317
***

0.027
** 0.004

-0.013 -0.012 -0.009 -0.009 -0.009 -0.009 -0.008 -0.009 -0.012 -0.017

Urban not Rural -0.321
***

-0.041
***

-0.033
***

-0.044
***

-0.035
***

-0.150
***

-0.022
**

0.072
***

-0.106
***

-0.328
***

-0.014 -0.014 -0.01 -0.011 -0.011 -0.011 -0.01 -0.011 -0.015 -0.019

Have Children 0.129*** 1.778*** 0.935*** 0.205*** 0.125*** 0.298*** 0.045*** -0.086*** 0.104*** 0.226***

-0.013 -0.013 -0.008 -0.009 -0.009 -0.009 -0.008 -0.009 -0.013 -0.017

Cars Available -0.379*** -0.595*** -0.494*** -0.039** -0.062*** -0.135*** -0.138*** -0.030* -0.117*** -0.232***

-0.022 -0.022 -0.016 -0.017 -0.017 -0.018 -0.016 -0.017 -0.023 -0.031

Income Top 

Quintile
0.309*** -0.063*** 0.126*** 0.030*** 0.025*** 0.103*** 0.228*** -0.013 0.357*** 0.139***

-0.013 -0.015 -0.01 -0.01 -0.01 -0.01 -0.008 -0.01 -0.013 -0.018

Constant -2.247*** -1.406*** -1.378*** -1.155*** -1.038*** -1.188*** -0.786*** -0.869*** -1.730*** -2.215***

-0.022 -0.022 -0.016 -0.017 -0.017 -0.017 -0.015 -0.017 -0.023 -0.032

Note: *p<0.1; **p<0.05; ***p<0.01
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commute by car are 45% more likely to record trips for ‘personal business’ or errands 

as for commuting, as commuting by car allows more trip-chaining. Still, a telecommuter 

is over 67% more likely to make an additional food shopping trip and 82% more likely 

to run more errands. 

The highest probability of a trip purpose other than commuting being recorded by a 

telecommuter is for escort education. Again transforming the coefficients, a regular 

telecommuter is 113% more likely to record this type of trip than one who doesn’t 

telecommute every week. To put this in perspective, someone with dependent children 

in the household is over 500% as likely as someone without dependent children to 

travel in order to escort a child to education. The only other characteristic with a 

sizeable effect on making escort education trips is those within the household who 

work full-time, who are 73% less likely to make such trips. Together, these coefficients 

or odds suggest that those with work flexibility, such as telecommuters and part-time 

workers are more likely to have responsibility for the school run in households with 

dependent children than adults in the same household with less flexibility. Indeed, as 

discussed in the literature, the causal effect may be that workers choose to 

telecommute or switch to part-time work because they have children and caring 

responsibilities, including escort duties. The results of a sensitivity test looking at those 

without dependent children in the household in Table 8.5, show these telecommuters 

only 35% more likely to make a trip for the purposes of escorting someone to education 

– which could be education trips other than the school run. 
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Table 8.5: Results from the multinomial logit model for the influence of 2009-2016 
NTS individual and household characteristics on the week’s travel diary recorded trip 
purposes, with only telecommuters (and non-telecommuters) without dependent 
children in the household included. 

 

Escort duties include more than education too, and almost double the number of 

trips in the travel diaries are categorised as ‘other escort’. Telecommuters are 86% 

more likely to record such trips than non-telecommuters, and the presence of children 

in a household increases the likelihood of additional ‘other escort’ trips by 153%. Those 

who work full-time are 44.5% less likely to make such trips, whilst those who commute 

by car are 93% more likely. The latter may be another example of car commuters, 

whether driver or passenger, not commuting directly, who, as well as making linked 

Business
Escort 

Education

Other 

Escort

Food 

Shopping
Shopping Errands Leisure Visiting Holidays Other

Telecommute 

at least weekly
0.742

***
0.303

***
0.604

***
0.508

***
0.505

***
0.610

***
0.626

***
0.463

***
0.630

***
0.722

***

-0.018 -0.049 -0.021 -0.019 -0.019 -0.019 -0.016 -0.019 -0.023 -0.03

Full Time not 

Part Time
-0.065

***
-1.678

***
-0.487

***
-0.412

***
-0.461

***
-0.513

***
-0.486

***
-0.434

***
-0.535

***
-0.437

***

-0.014 -0.021 -0.013 -0.011 -0.011 -0.012 -0.01 -0.011 -0.015 -0.021

Employee not 

Self-Employed
-0.203*** 0.109*** -0.149*** -0.058*** -0.026 -0.241*** -0.074*** -0.034** -0.094*** 0.047

-0.015 -0.04 -0.018 -0.017 -0.017 -0.017 -0.015 -0.017 -0.021 -0.029

Have Regular 

Workplace
-1.792*** -0.400*** -0.510*** -0.474*** -0.502*** -0.416*** -0.572*** -0.496*** -0.545*** -0.678***

-0.013 -0.033 -0.016 -0.015 -0.015 -0.015 -0.013 -0.014 -0.019 -0.024

Have Degree 0.480
***

-0.211
***

0.049
***

0.104
***

0.073
***

0.240
***

0.312
*** 0.01 0.347

***
0.122

***

-0.011 -0.022 -0.012 -0.01 -0.01 -0.011 -0.009 -0.01 -0.014 -0.019

Male not 

Female
-0.064*** -0.034* 0.096*** -0.235*** -0.191*** -0.086*** 0.064*** -0.194*** 0.008 -0.102***

-0.011 -0.019 -0.011 -0.009 -0.009 -0.01 -0.008 -0.009 -0.013 -0.017

Over 40 0.254*** -0.808*** 0.494*** 0.372*** 0.269*** 0.271*** -0.177*** -0.205*** 0.305*** 0.432***

-0.012 -0.023 -0.012 -0.01 -0.01 -0.011 -0.009 -0.01 -0.014 -0.019

Car to work 0.446
***

0.140
***

0.727
***

0.236
***

0.185
***

0.319
***

0.121
***

0.282
***

0.183
*** 0.001

-0.012 -0.02 -0.013 -0.01 -0.01 -0.011 -0.009 -0.01 -0.014 -0.018

Urban not Rural -0.063*** -0.015 0.003 0.003 0.034*** -0.142*** 0.047*** 0.109*** -0.223*** -0.219***

-0.013 -0.027 -0.014 -0.012 -0.012 -0.012 -0.011 -0.012 -0.015 -0.021

Cars Available 0.202
***

0.906
***

0.197
***

0.168
***

0.099
***

0.160
***

0.201
***

0.200
***

0.044
*

0.155
***

-0.021 -0.05 -0.022 -0.02 -0.019 -0.02 -0.018 -0.02 -0.025 -0.035

Income Top 

Quintile
0.193*** -0.028 -0.101*** 0.019* 0.076*** 0.111*** 0.209*** -0.016 0.214*** 0.157***

-0.011 -0.024 -0.012 -0.01 -0.01 -0.011 -0.009 -0.01 -0.014 -0.018

Constant -0.829
***

-2.160
***

-1.903
***

-1.048
***

-0.858
***

-0.952
***

-0.571
***

-0.719
***

-1.435
***

-2.081
***

-0.022 -0.038 -0.02 -0.019 -0.019 -0.02 -0.017 -0.019 -0.026 -0.035

Note: *
p<0.1; 

**
p<0.05; 

***
p<0.01
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trips, may be involved in car sharing, perhaps to adjacent workplaces, or otherwise 

escorting someone on their commute. Other escort trips do not necessarily involve 

children, and could be non-child-related care-giving responsibilities that fall to working 

adults with more locational and temporal flexibility, such as telecommuters. In the 

sensitivity test without children, telecommuters are still 83% more likely to make an 

‘other escort’ trip as non-telecommuters. 

Although the size of the effects vary, telecommuting at least once a week has 

consistent, significant, and relatively large effects on the probability of making 

additional journeys for all other purposes compared to the reference case of 

commuting. Conversely, working full time and working in the same place or the same 

place on at least 2 consecutive days, has a consistently negative, but always significant 

effects on an individual’s likelihood of recording frequent journeys for any purposes 

other than commuting. This reinforces the message described in the previous two 

paragraphs, that people working full time at a regular workplace away from home have 

the least flexibility, whereas regular telecommuters have a substantial amount of 

spatial flexibility in terms of where they work, and have more temporal flexibility as well, 

by freeing up commute time if not in other ways, which allows them to take trips to 

alternative activities more regularly. In contrast, the model suggests that being an 

employee or self-employed has less influence on the probability of choosing to make 

non-commuting trips, which may imply that being self-employed offers less additional 

flexibility than telecommuting or part time work in a normal week. However, the findings 

in Chapter 6 suggest that those who are self-employed do make fewer trips during 

disruption, perhaps because they have more autonomy and a greater awareness of 

risk than other full-time employees, and act accordingly. 
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To return to the model in this chapter, those who commute by car, whether driver or 

passenger, and households with car availability to match the resident adults had a 

higher probability of recording trips for non-commuting purposes, although that effect 

was mostly lower than for telecommuters. This could mean that the flexibility that the 

private vehicle offers an individual or family results in more trips in total, and of all 

types. However, this chapter does not aim to analyse modal share or vehicle mileage 

by trip purpose, but rather aims to highlight that telecommuters do make more trips for 

non-commuting purposes, both in relative and absolute terms, and policy should reflect 

the need for more non-work destinations to be accessible locally and by sustainable 

modes. It should not be assumed that travellers do not want to walk. The ‘other’ 

category mainly refers to “walking trips for pleasure or exercise along public highways, 

including taking the dog for a walk and jogging” (Department for Transport, 2017b, 

National Travel Survey 2016: Notes and Definitions: p11). Frequent telecommuters are 

89% more likely to make such trips, indicating they not only have the time and perhaps 

the dog-walking responsibilities, but also the desire to walk along pavements and local 

streets. Yet they may have insufficient amenities which they are willing to walk a mile 

or more to reach, and so these walks are not categorised as other journey purposes.  

Walks under a mile are excluded from the main analysis, but a brief review of the 

un-weighted single day of short walk trips recorded in the travel diaries each year 

between 2009-2015 shows that regular telecommuters not only make more short walk 

trips per person than those who don’t regularly telecommute, but also make more short 

walk trips for purposes other than commuting, as shown in Figure 8.3. 
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Figure 8.3: One day’s short walk trips per person by telecommuting status 2009-
2015. 

8.4 Discussion and Conclusion 

Telecommuting in and of itself may not reduce car travel or increase sustainability. 

Although regular telecommuting reduces the number of commuting trips that workers 

make, the willingness of frequent telecommuters to live further from their place of work 

and to make more journeys for non-work purposes has led other researchers to 

question whether telecommuting practices result in fewer trips or mileage, or more than 

a marginal reduction in car travel at the household or even national scale (Gubins et 

al., 2017; Kim, 2017; Zhu, 2013). Yet even a study sceptical of the sustainability of 

telecommuting noted that two-worker households with one regular telecommuter 

appear to make more efficient journeys and redistribute travel to minimise mileage (de 

Abreu e Silva, 2018). And although no attitudinal data is included in this study, research 

into residential self-selection indicates that people do want to move to areas where 

they can drive less, including younger generational cohorts, but this will only be 

possible if such areas are available to them (Aditjandra et al., 2011; Melia et al., 2018). 

The density of local shopping and leisure options, as well as the proximity of schools 
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and other escort and business destinations, is more relevant to the travel behaviour of 

telecommuters than of non-telecommuters, especially if, as one study identified, the 

difference of travel patterns does not occur on ‘commuting work days’ (Kim, 2017). 

Thus, accessible, mixed use areas could enable frequent telecommuters, who have 

time to make more trips for purposes other than commuting, to do so more sustainably.  

The purpose of the research in this chapter is to assess the relationship between a 

common form of online accessibility, namely accessing work activities from home 

through telecommuting, and the demand of those telecommuters for spatial 

accessibility to other activities. The accessibility of such activities in terms of distance, 

transport options, and the convenience of ‘intervening opportunities’ will have a major 

influence on travel patterns and their resultant impact (Noulas et al., 2012), particularly 

for telecommuters. Other benefits from telecommuting and flexible working can be 

achieved with little effort, as fewer peak hour commute trips can result in reductions in 

congestion, smoother flows, and thus less emissions. Furthermore, if flexible working 

patterns result in more flexible travel patterns, it can lead to more resilient travel 

behaviour as more people have an option that is recognised and supported by their 

employer not to travel during disruption (Marsden and Docherty, 2013).  

Through focusing on journey purposes independently of distance or mode of travel, 

the empirical analysis clearly shows that those who telecommute at least once a week 

take half the number of commute trips, but more trips for most other purposes. These 

include business trips to places other than their normal place of work, escort journeys, 

whether to school or other destinations, errands, and destinations for local leisure and 

recreation activities. Furthermore, the multinomial logit model estimations demonstrate 

that the probability of taking more trips for all these purposes other than commuting is 
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greater if an individual frequently telecommutes than for most other socio-economic 

characteristics tested. Indeed, even where there are stronger effects for other 

characteristics, such as having no regular workplace on the probability of business 

trips or the presence of children in the household on the probability of escort trips, the 

effect of being a telecommuter remains consistently high. Considering that the analysis 

also suggests that frequent telecommuters are slightly more likely to commute by train 

when they do go to work, take slightly greater numbers of short walks per person, and 

a slightly higher proportion live in households with fewer cars per adult, these are not 

the characteristics of a demographic intent on car dependency. The numbers are 

small, but significant, and the numbers of working adults who telecommute or 

otherwise have more flexible working patterns is growing, whilst the number and 

proportion of commuting trips is in decline (Le Vine et al., 2017).   

Therefore, individuals who telecommute replace the commuting time they save on 

days they work from home not just with longer commute trips when they do go to work, 

but also with more trips for other purposes. This does not mean they want to spend 

more time travelling in congestion for those trips, nor are all those trips likely to be by 

car. In fact, frequent telecommuters appear to favour walking, as they not only make 

additional short walk trips per person, but also are 89% more likely to make trips over 

a mile in the ‘other (just walk)’ category. This has major implications for future transport 

and land use planning policy and the environmental impact of transport. A narrow focus 

on housing numbers, mobility technologies, or a traffic-based ‘predict and provide’ 

approach will not deliver a sustainable future (Marsden et al., 2018). There are many 

studies that highlight the benefits of mixed use development with residential densities 

that support accessible, local amenities (Banister, 2008; Headicar, 2015). This chapter 
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provides additional evidence by considering how telecommuting practices also support 

the drive to plan for accessible neighbourhoods. Similar to other current technological 

trends, telecommuting will only enable sustainable, resilient communities if planning 

takes an active role in ensuring that result. 
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9. CONCLUSION 

The overarching research objective of this thesis was to investigate the opportunities 

that improving ICT and increasing space-time flexibility create for commuters and other 

travellers to respond to severe weather, risk, and transport disruption. Previous 

research suggests that work-related travel is the least responsive to transport 

disruption or risk of disruption and delay, compared to travel for other purposes (De 

Palma and Rochat, 1999). This is because work is still the central activity around which 

most employed adults plan their daily schedule, despite the trend in the UK towards 

fewer regular commuting trips, which in turn is partially due to ICT and the increasing 

space-time flexibility it offers for activities such as telecommuting (Le Vine et al., 2017). 

Meanwhile, the literature on telecommuting tends to ignore the resilience aspect and 

potential of remote work and online access. Reviews of the costs of severe weather 

events also discount the potential of remote working and telecommuting, assuming a 

loss of productivity corresponding to a daily commuting ‘average’ (Chatterton et al., 

2016). These gaps and oversights were the initial focus of the research that resulted 

in this thesis, originally entitled ‘(Tele)commuting, Cities and Weather Conditions’. 

Although the research aim and objectives expanded to encompass other interactions 

between travel choices, internet accessibility, and extreme weather, this thesis 

describes and in some ways quantifies the resilience potential of access behaviours 

like telecommuting and other online activity. 

Resilient responses are more a matter of accessibility than mobility because the key 

metric is whether affected travellers are still able to participate in activities as planned, 

even if they cannot use a particular transport service to travel to a particular place. 

Thus, maintaining accessibility during disruption involves choices of mode, route, and 
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timing of travel, as well as any alternatives or flexibility in where, for how long, and how 

often activities are undertaken. The more access options available, the more 

potentially resilient an individual or community will be. Since the variety and quality of 

transport and ICT options available during a severe weather event is dependent upon 

the geographic and socio-economic characteristics of particular groups in particular 

places, secondary data sources and quantitative methodologies were used to measure 

differences in space-time flexibility and accessibility. The findings therefore provide 

insights into the wider role ICT have to play in increasing resilience by providing 

information about disruption or alternatives and by enabling online accessibility to work 

activities and other goods, services, and social interactions. The research also 

highlights the priority given to work purposes, and the commensurate reduction in 

accessibility to other activities. The overarching conclusion is that if policy actions can 

improve space-time flexibility through increasing internet accessibility and transport 

alternatives to more geographies and socio-economic groups, the result will be more 

resilient and sustainable access choices during extreme weather. 

9.1 Summary of Main Findings 

This thesis is as much about identifying the potential capability of commuters and 

their households to be more resilient in severe weather as it is about understanding 

whether they are already taking resilient actions. Both the literature review and 

empirical analyses confirm the importance of work activities to the organisation of daily 

travel, and also provide evidence that the robustness of ICT infrastructure, and the 

increasing space-time flexibility of working patterns offer significant opportunities for 

commuters in particular to make more resilient access choices and maintain 

productivity even where they cannot get to work or caring responsibilities, e.g. due to 
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school closures, keep them home. Furthermore, if resilience is viewed as an integral 

part of sustainability, online access and flexibility of access have a greater role to play 

than is often highlighted in research on ‘sustainable travel’ and how it can mitigate 

climate change through the reduction of greenhouse gas emissions. As discussed in 

Chapter 3, ICT can increase the knowledge available on travel, destination, and activity 

choices where available, as well as offer online access as an independent choice. In 

order to analyse the breadth of interactions between internet accessibility and travel 

choice, a number of data sources informed the empirical chapters. These include 

electronic ticketing transactions, mobile phone network data, broadband speed data, 

weather records, and the National Travel Survey, along with a variety of 

complementary data to control for socio-economic and geographic characteristics. 

Due to the use of secondary data sources throughout this research, which are not 

designed to capture perceptions, the empirical chapters cannot answer whether a 

proportion of commuters and other travellers take heed of weather warnings and if this 

is the reason they work or access other activities from home. Nor have any surveys 

been undertaken to measure the level of awareness among commuters and other 

travellers of the risks described in section 2.2, namely that delays, lost productivity, 

personal and property damage during travel are all more likely during extreme weather. 

Transport authorities are aware of these risks but assume travellers are not; as 

mentioned in section 2.1; they calculate the welfare costs of severe weather events by 

assuming that any delay and disruption affect all those who would ‘normally’ be on the 

network, as based upon traffic models calibrated to the ‘average’ day.  

Yet Chapters 5 and 6 indicate that people who have spatial flexibility, in that they 

have alternative means to access workplaces or work tasks, or who have temporal 
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flexibility, such as part-time workers, are more likely to change their behaviour during 

extreme weather events. Both chapters therefore meet research objectives a) and b). 

Specifically, in Reading, employees used a Park and Ride service in the outbound 

direction to access a local business park, rather than waiting for a severely delayed or 

cancelled train. In the West Midlands, residential areas with higher proportions of part 

time and self-employed residents were more likely to generate fewer trips under storm 

conditions. Furthermore, whilst a similar number of trips were taken overall, 

significantly more of these were direct commuting journeys, indicating a reduction in 

linked trips and a switch in journey purposes, a choice underrepresented in previous 

studies and thus meeting research objective c). Chapters 5 and 6 also demonstrate 

that the presence of certain socio-economic groups is associated with staying at home 

under storm conditions, and whilst the bus data in Chapter 5 indicates these cancelled 

trips are more likely to be discretionary ones made by the elderly, Chapter 6 suggests 

that self-employed workers may well be choosing to telecommute. 

The potential for online access to replace travel and reduce travel risk during 

disruption is investigated in the most detail in Chapter 7, which describes how internet 

activity increases during both the storm periods chosen as case studies in Chapters 5 

and 6, and also more broadly during adverse weather as defined by a broad set of 

parameters in Chapter 7. The uncertainties of using weather parameters in the models 

estimated in Chapter 7 rather than known impacts and the inability to ascertain whether 

the increased internet activity is due to telecommuting are both acknowledged, but the 

focus is on research objectives b) and c), rather than a). Furthermore, the novel 

approach to analysing broadband speed data does offer evidence of the relationship 

between ICT, weather and travel risk. Internet activity increases in adverse weather, 



166 
 

and where post-storm surveys have been administered as discussed in section 3.2, 

respondents indicated an increase in telecommuting and temporally flexible working or 

commute choices. 

However, as also discussed in section 3.2 and further in section 8.1, the literature 

on telecommuting questions the sustainability of the practice if regular telecommuters 

travel further to work and business when they do work outside the home and also make 

more non-work trips. Therefore, Chapter 8 seeks to challenge this framing of regular 

telecommuting as unsustainable, not only because of its resilience potential as 

frequent telecommuters are empowered to stay at home during extreme weather, but 

also because of its potential to enable more non-work journeys by sustainable modes. 

Indeed, whilst the analysis in Chapter 8 supports the hypothesis that telecommuters 

make more non-work trips, it suggests that these are not automatically by car, as 

telecommuters are more likely to commute by train and make more trips per person on 

foot, even if the latter may not be for purposes of access to goods and services. By 

using a quantitative methodology which can interrogate the influence of geographic 

and socio-economic characteristics, as in research objective b), this chapter thus offers 

significant insights into telecommuting as a potential resilient response, thus meeting 

objective c). The implication is that telecommuting enables the temporal flexibility to 

dedicate more time to travelling sustainably, but not always the spatial flexibility if 

neighbourhoods are not designed to accommodate accessibility to non-work 

destinations. Redesigning neighbourhoods to improve access to more activities than 

employment would also assist those who cannot telecommute and therefore prioritise 

work journeys during severe weather events, as found in Chapter 6, when there was 

reduced accessibility to ‘other’ activities if they were not available close to home.  



167 
 

9.2 Policy Implications 

If telecommuting is to result in not only a redistribution of motorised travel, but also 

less motorised travel in total, more attention must be given to the accessibility of land 

uses, activities and journeys other than the home to work commute. According to the 

NTS, the proportion not only of telecommuters, but also other workers with spatial and 

/ or temporal flexibility is increasing in the UK. This increases the variability of work 

trips, leading to the decline of the traditional or ‘average’ commute, and thus the 

importance of non-work travel. The planning and policy implications are to invest in 

walkable neighbourhoods with well-dispersed basic services and amenities that can 

support more active travel, as well as road layouts and street design that physically 

prioritise such modes within what might traditionally be considered the ‘first / last mile’ 

from people’s homes (Banister, 2008; Tight et al., 2016). Key amenities, such as post 

offices, which are currently centralised in commercial areas should be integrated into 

residential areas to enable greater access to important activities from home, rather 

than work. This would reduce the need for work-based trip chaining, and make 

neighbourhoods and communities with less flexibility more resilient to severe weather 

and other disruptions. It is often possible to walk if other modes are unavailable, and 

regular, but less frequent activities (e.g. food shopping) can be more easily maintained. 

In the West Midlands in June 2016, it was not the location of disruption so much as 

who was travelling, what amenities were available to them, and where they lived and 

worked which influenced their spatial and temporal accessibility so as to create a 

significant pattern of change in travel by journey purpose. This has implications for 

understanding resilient accessibility behaviours that are separate from the physical 

constraints of travel and impacts on infrastructure. Issues such as land use, urban 
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form, working patterns, investment in enabling ICT, and community engagement all 

demand consideration. Denser urban areas with better fixed and mobile internet 

access, more transport alternatives, and more opportunities for multiple activities in 

close proximity offer many more options in terms of accessibility and therefore 

resilience, as well as various co-benefits in terms of social equity and environmental 

sustainability. Indeed, whilst the resilience of transport infrastructure may continue to 

be the purview of transport engineers, transport planners must consider the 

sustainability of travel behaviour, or more accurately, ‘access’ behaviour from the point 

of view not only of mitigating climate change, but also adapting to an uncertain future 

of more frequent weather extremes and other disruptive events.  

One option is to introduce flexibility between travel options or for work access as 

part of emergency or contingency planning separate from any policy proposals 

developed as part of a strategic sustainable transport package. For example, following 

Storm Doris and a few subsequent, unplanned disruptions to the public transport 

network through Berkshire, Reading Buses came to a formal agreement with the main 

train operator, First Great Western. Although separate business models have made a 

fully integrated ticketing system difficult to negotiate,18 the bus drivers know to accept 

rail tickets on the buses whenever they are informed of disruption to the relevant train 

services, and the operators have agreed reimbursement terms. Similar contingency 

plans could also be arranged between policy-makers and employers, particularly those 

in business parks, industrial areas, and other places with high workplace population 

densities, to encourage and enable more employees to connect remotely if it is the 

                                                           
18 Other than ‘PlusBus’ a nationally recognised and organised scheme for rail passengers who indicate they will 

need onward bus travel at the time they purchase their rail tickets. Reading is one of the ‘top destinations’ for 
PlusBus according to the scheme’s website https://www.plusbus.info/home accessed 5 October 2019. 

https://www.plusbus.info/home
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most resilient and least risky choice, such as when an area is under weather warnings. 

In the United States, statutory telework arrangements as part of federal government 

emergency planning meant that a third of employees worked remotely during 

Hurricane Sandy in 2012 (Allen et al., 2015). Although such measures could be less 

effective in a region with more than the average proportion of manufacturing or retail / 

hospitality jobs, if employers are invested in providing such options to increase 

flexibility and maintain accessibility, then traveller responses in times of disruption 

could be more proactive no matter the nature and timing of the disruptive event. 

Employers may even be able to measure how well such policies maintain productivity 

and business continuity during extreme weather events by monitoring and managing 

online work activities. 

Indeed, as transport and ICT technology become more interwoven, and as 

economic and social behaviours become more flexible, policy decisions are usefully 

supported by evidence of the internet’s ability to overcome traditional time and space 

constraints, and make planning for and investing in the weather resilience of such 

technology, including bandwidth, more efficient and effective. This thesis adds insights 

into the temporal variability of online access and quality of service to the existing 

literature that focuses on the demographic and spatial inequities of ICT penetration 

and levels of service (Blank et al., 2018; Philip et al., 2017; Riddlesden and Singleton, 

2014). Some of the temporal variability is due to supply side issues, such as bandwidth 

and redundancy. These issues can overlap with identified spatial inequities, such as in 

rural areas where there is less choice in connection technologies and especially in 

those which are robust in adverse weather. Supply side temporal vulnerabilities can 

also be highly localised, such as where the location of ICT infrastructure is susceptible 
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to flooding or likely to be exposed to lightning strikes or fallen trees. Other temporal 

variability is due to demand, including the issue of contention analysed in Chapter 7, 

which, to my knowledge, has not been previously researched in this context.  

The policy implication is that proposals to improve the country’s digital networks 

should explicitly consider temporal as well as spatial and demographic ‘digital divides’ 

and address these in an integrated fashion. The capability to use ICT is not universal 

and the option, opportunity, preference, and practice of online access is not available 

consistently in time or space or across socio-economic groups. However, as local 

governments around the UK develop strategies to bridge digital divides or better 

connect rural areas to superfast broadband, these strategies should take account of 

the potential of different connection options to suffer from contention or be vulnerable 

to irregular events like storms due to their location. 

9.3 Future Research 

Therefore, the policy implications of this work are as much to do with addressing the 

inequity of access to ICT, particularly with reference to the findings on temporal 

variability of access and flexibility of working patterns, as they are about planning 

transport access and preparing for extreme weather events. Further research into 

patterns of broadband services in all their spatial and temporal granularity could 

uncover additional patterns in the interaction between spatial and temporal quality of 

service levels. It could be enlightening to assess different urban, suburban, and rural 

geographies with different weather thresholds applied for different seasons and during 

holiday periods, rather than working days. It may even be possible to predict the impact 

of weather on broadband speed and availability, thus enabling improved messaging to 
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the public around weather risks and their options for response in real time, including 

going ‘online’.  

To develop such tools, it would be useful to have a complete set of data on internet 

and travel access, but a major limitation on this type of research is data availability: 

when, from whom, for how much, in what format, and in what way pre-processed. For 

example, in neither of the case studies described in Chapters 5 and 6 were data 

available on the full range of movements during the severe weather events. The 

electronic bus ticketing data in Reading obviously only allowed analysis of movements 

by a single mode, although at the most detailed level of temporal and spatial granularity 

for that mode. The MND provided a greater breadth of movements, including all trips 

by regular customers by whichever mode, even if undefined. However, many short 

trips were likely overlooked, the only specified trip purpose was commuting, and the 

spatial and temporal granularity was much more limited. Both case studies therefore 

captured a proportion of changes in travel behaviour, but not the full range. The 

changes identified fill some gaps in the literature, such as using electronic ticketing 

data to describe what occurs during a storm on public transport run by different 

operators rather than changes in daily travel for a single operator in response to normal 

weather variations. However, other aspects of travel response are still left unstudied.  

One gap is consideration of active travel during extreme weather. The literature 

indicates that rain, wind, and certain temperature bands induce modal switch away 

from walking and cycling to more sheltered transport, but there is no consideration of 

whether this pattern still applies during storms or flooding, when walking and cycling 

routes may be more passable or less damaged than other infrastructure. Further 

research in this area would be useful to add to the adaptation side of the sustainability 
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debate and the potential co-benefits between designing for resilience as well as 

mitigation.  

Furthermore, if multiple big data sources offering spatial and temporal granularity 

were available for a particular case study that included a period of weather disruption, 

it might be possible to understand the influence of the time of day and the location of 

impacts on transport, other infrastructure, and service availability on all modes of travel 

/ online accessibility behaviour. Additional case studies would help highlight whether 

locally-specific characteristics of a city’s infrastructure or its population are significant 

to the resilience of that community. Combining data sources could enable more 

research into the accessibility choices available in a particular place. For example, the 

data sources used in Chapters 6 and 7 together show which MSOAs, with a population 

density between 1,000 and 15,000 persons per square kilometre and a median area 

of 2.17km2, have a reasonable level of both online access and access to key non-work 

services: 

 
Figure 9.1: The diameter of the circles is scaled by the number of MSOAs populated 
by between 1,000 and 15,000 people per square km, plus which have median 
broadband speeds of at least 10Mb/s in 2016, plus the presence of at least one of 
each common amenity within the MSOA. The land uses are geo-located using 
crowd-sourced data from OpenStreetMap (Geofabrik GmbH, 2017). 

If a survey-based or qualitative approach were added to this sort of analysis, it would 

improve understanding of local perceptions of accessibility to non-work destinations 
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from residential neighbourhoods, the importance of those destinations to personal 

resilience, and trade-offs between journey purposes. More insights might be garnered 

on these questions from the National Travel Survey as well, by looking at different 

types of flexible workers and their patterns of non-work travel. With insights into which 

activities should be prioritised to provide more robust access or more access options, 

and whether online access is an option likely to be chosen for certain activities, it would 

become possible to map accessibility in new and more precise ways, rather than the 

rough estimations in Figure 9.1. Also, as all the empirical analysis in this project is 

focused within the UK, future research might investigate whether the insights apply in 

other countries and cultures. The analysis in this thesis aims to provide meaningful 

insights, but also highlights the many directions for future research. 

In conclusion, the results and policy implications of this research project are all about 

the need for integration. Integrate policies for adaptation with those for mitigation to 

make travel behaviour more sustainable and realise co-benefits. Integrate ticketing and 

increase the transport modes available for redundancy. Integrate transport access with 

ICT access. Replace spatial and temporal barriers to travel and online access with 

quality services and infrastructure that can meet irregular demand. Increase and 

proactively plan for the varied spatial and temporal flexibilities available to commuters 

during disruption. To summarise, current and emerging trends in space-time flexibility, 

which are characteristic of the digital age, do offer opportunities to expand the access 

options available in extreme weather or during other disruptions, and to reduce their 

economic and social impact. To take advantage of these opportunities and induce 

more resilient responses to transport disruption and risk, sustainable policy must take 

an integrated approach to travel choice and internet accessibility.  
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